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Abstract

In some discrete games with incomplete information, payoff-relevant states are
influenced by unobserved heterogeneity that directly affects strategic decisions.
When ignored, such endogeneity potentially leads to problematic parameter infer-
ence and policy implications. We introduce a control-function (CF) approach for
estimating such games, and apply the method to an entry game of deploying
4G-LTE technology between major U.S. cellphone service providers. Unlike CF
methods in single-agent contexts, our CF approach in the context of Bayesian
games is based on new conditions on how unobserved market and player hetero-
geneity correlate with sources of endogeneity and instruments. Taking network
investment as endogenous, we find that a hypothetical T-Mobile and Sprint merger
would reduce 4G-LTE deployment across the local markets in our sample, and
disproportionately decrease rural coverage. Ignoring such endogeneity would
under-predict the negative impacts of the merger, therefore favoring its approval.
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1 Introduction

We propose a control-function approach for estimating discrete games with incomplete
information (a.k.a. Bayesian games) when observable payoff-relevant covariates are
endogenous. Games with incomplete information provide a powerful framework for
analyzing strategic interaction among individuals or firms with private information
(e.g. types or signals) and have been studied in a wide range of applied contexts.
Examples include location choices in the video retail industry in Seim (2006); timing
of commercials by radio stations in Sweeting (2009); choices of movie release dates in
Einav (2010); market entry and exit of grocery stores in Grieco (2014); choices of effort by
students and teachers in classrooms in Todd and Wolpin (2018); and choices of fitness
exercises by adolescents in Jackson, Lin, and Yu (2022). An important assumption
required for inference in these empirical studies is that the covariates are exogenous at
both the player- and the game-level.

When covariates in a game with incomplete information are endogenous,
identification and estimation require further assumptions on the joint distribution
of covariates, private types, and instruments. This endogeneity issue poses challenges
for model inference that are analogous to endogeneity in single-agent qualitative
response models, but are aggravated under strategic interaction. Specifically, dealing
with endogenous covariates in individual choices in such cases requires constructing
a complete vector of individual-specific control functions for all players. More
importantly, if such endogeneity is due to unobserved market-level or game-level
heterogeneity that also influences the covariates and types of other players, then the
private types are generally correlated even after conditioning on all covariates. This
complicates the equilibrium characterization, as well as identification and estimation
because players’ equilibrium beliefs need to be conditioned on private types.1

Endogeneity in covariates is common in environments with strategic interaction.
Berry and Reiss (2007) pointed out that the issues of “endogenous scale of operations"
and “endogenous product characteristics in a continuous space" are “empirically
important and valuable extensions of the existing empirical literature on structural

1To see this, consider a binary game with two players i, j, individual-specific covariates Xi,X j, and
private types ui,u j. Suppose that Xi,X j and ui,u j are all correlated through some unknown market/game-
level factor. In this case, conditioning on (Xi,X j) is not sufficient for attaining independence between
(ui,u j) in general. Thus i’s equilibrium belief about j’s decision D j would be a non-trivial function of its
own types E(D j|Xi,X j,ui).
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models for market structure."2 For a specific example, consider the decisions by
cellphone service providers to deploy a new generation of cellphone technology in
local service markets. These providers rely on cellular network infrastructures, such
as transmission facilities and switching offices, to provide cellphone services. As
the technology evolved from 3G to 4G-LTE in the last decade, a provider could
reconfigure and upgrade its 3G network to deliver 4G-LTE services. In addition,
the spillover effects of a provider’s 4G-LTE deployment in neighboring markets
could reduce the deployment costs in a focal market. Therefore, a provider’s 3G
deployment in a local market (which measures the existing network scale) and 4G-LTE
deployment in neighboring markets (which measures the spatial network spillover)
are both important covariates that influence its decision to enter a local 4G-LTE market.
Endogeneity in these covariates may result from several sources. For instance, there are
unreported demographic or geographic characteristics (e.g., topographic features) that
affect the investment cost of the 3G and 4G deployment in the focal and neighboring
markets. For another example, a provider’s spectrum holdings can be strongly
correlated between focal and neighboring markets to affect deployment decisions
across these markets.3 More broadly speaking, endogeneity is a concern in social-
economic settings in which some payoff-relevant states involve past decisions (e.g.,
advertising expenditure, R&D expenses) that were influenced by latent, unreported
player- or game-level factors. We are not aware of any paper that allows for such flexible
sources of endogeneity in the empirical analysis of discrete games with incomplete
information and investigates the impact on inference and policy implications when
endogeneity is ignored. The goal of our paper is to fill this gap.

We contribute to the econometric and empirical literature on discrete games
with incomplete information in two ways. First, we introduce a general, feasible
control-function method for estimating binary games with incomplete information in
the presence of endogenous states. We model endogeneity in covariates through
a triangular system that is flexible enough to accommodate correlation through
both player-level and game-level unobserved heterogeneity.4 Specifically, the first

2Dunne, Klimek, Roberts, and Xu (2013) echo this point, stating “... (a direction for future research)
involves incorporating firm-level heterogeneity in profits, fixed costs, and/or entry costs that is correlated
over time for individual firms." Firm-level covariates that display persistence over time are very likely
endogenous.

3Spectrum licenses are initially allocated by the Federal Communication Commission’s auctions. Due
to frequent activities in the secondary market, each firm’s spectrum holdings are imperfectly observed
by other firms and unobserved by the researchers.

4Grieco (2014) studies discrete games with exogenous covariates but a flexible information structure
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(structural, outcome) equation in the system specifies how firm profits are affected
by competition and firm-level endogenous states. We model these effects as policy-
invariant parameters, and use them to predict market outcomes under counterfactual
policy scenarios. The second (auxiliary, selection/endogeneity) equation is reduced-
form in nature; it relates the endogenous states directly to profit-relevant exogenous
covariates as well as instruments (which affect firm profits only indirectly through the
endogenous states).

Our control function approach for dealing with endogenous covariates in Bayesian
games should not be viewed as a direct extension of CF methods in single-agent
contexts. This is because in such games the endogenous covariates enter the players’
strategies non-linearly through information sets, on which individual beliefs are
conditioned. Consequently, our CF approach in such games is based on new, distinctive
conditions that could accommodate a rather flexible correlation between unobserved
market-level and player-level heterogeneity and the endogenous payoff states. We
elaborate on the economic substance of these identifying conditions in the text,
following their introduction (as Assumption 1) in Section 2.

A notable advantage of this model is that it allows us to identify the effects of
competition and endogenous states on market outcomes and to conduct counterfactual
policy analysis without having to structurally model another layer of strategic
interactions which (pre-)determine the endogenous states. Such advantage exists
because of two aspects: (a) the reduced-form endogeneity equation is flexible enough
to capture realistic sources of endogeneity, and incorporates instruments for valid
inference despite endogeneity; (b) in our policy analysis we consider immediate post-
merger scenarios in which the status of the new merger’s endogenous states (network
deployment) is completely specified. This latter aspect means we do not need post-
merger simulation of endogenous states, thus dispensing with the need for a structural
module about how endogenous states are pre-determined in a “first-stage” game. More
generally, the CF method is suitable for analyzing the implication of policies that do
not perturb the relation between endogenous states and instruments in (2).

The CF method we propose also has clear advantages over an alternative,

that incorporates both game- and individual-level unobserved heterogeneity. In comparison, we use a
triangular system to allow for flexible sources of endogeneity in covariates. Marcoux (2022) recovers
the unobserved heterogeneity of competitors in the Canadian telecommunications industry, using the
reduced form of their bids for spectrum licenses. He then uses the variation of such heterogeneity to
identify incumbents’ responses to the new entrant’s decisions. In his case, the bids for spectrum licenses
do not enter the network investment game directly as payoff-relevant states. In contrast, we construct
control functions from endogenous, payoff-relevant states and exogenous instruments.
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fully parametric approach which would require researchers to completely specify
the distribution of uk conditional on all endogenous covariates Xk2. First, our
method is robust and intuitive, because the stochastic restrictions we maintain on
the unobserved errors are not only nonparametric, but also have direct structural,
economic interpretation. Second, our method is suitable for showing robust model
identification. In comparison, a fully parametric approach would count on the assumed
form of likelihood to attain identification (which in many cases could only be done
locally by checking the singularity of the Jacobian of the likelihood).

We construct control function variables as residuals from auxiliary regressions using
exogenous instruments. (In our application of entry in 4G-LTE markets, we use the
lagged demographics of neighboring markets as instruments.) We propose a two-
step nested pseudo-likelihood (2SNPL) estimator, and show it is root-n consistent and
asymptotically normal. Our Monte Carlo simulation (in Appendix B) shows that the
estimator works well in finite samples with moderate sizes.

Heckman (1978), Newey (1987) and Rivers and Vuong (1988) propose methods for
dealing with endogenous discrete and continuous covariates in single-agent qualitative
response models. While there are other solutions for endogeneity in the literature,5

the control function approach has proliferated due to its simplicity, flexibility and
wide applicability.6 For example, Petrin and Train (2010) used control functions to
deal with endogenous product characteristics (such as prices) in a consumer demand
model, using marginal cost shifters as instruments. We contribute to this extensive
literature by bringing the control function approach into a setting of discrete games
with incomplete information.7 We combine control functions with a nested pseudo
likelihood method to handle the simultaneity embedded in a game with incomplete

5Lewbel (2000), Blundell and Powell (2004), Rothe (2009) and Hoderlein (2014) deal with endogeneity
in semiparametric binary choice models; Vytlacil and Yildiz (2007) consider nonparametric identification
and estimation of average treatment effects of dummy endogenous variables in weakly separable
models; Dong and Lewbel (2015) estimate binary choice models with discrete, continuous, or censored
endogenous regressors. D’Haultfœuille and Février (2015) and Torgovitsky (2015) show that non-
separable models with continuous outcomes and endogenous variables can be identified using discrete
instruments.

6Since its inception by Heckman and Robb (1985), the control function approach has been used in
various settings. See, for example, Newey, Powell, and Vella (1999), Chesher (2003), Das, Newey, and
Vella (2003), Lee (2007), Florens, Heckman, Meghir, and Vytlacil (2008), Imbens and Newey (2009), Klein
and Vella (2010), Hahn and Ridder (2011), and Kasy (2011) among others.

7For econometric analyses of static games with incomplete information, see Aradillas-Lopez (2010),
Bajari, Hong, Krainer, and Nekipelov (2010), Florens and Sbaï (2010), Tang (2010), De Paula and Tang
(2012), Misra (2013), Wan and Xu (2014), Lewbel and Tang (2015), Aradillas-Lopez and Gandhi (2016), Lin
and Xu (2017), Xu (2018), Aguirregabiria and Mira (2019), Lin, Tang, and Yu (2021) and Aradillas-López
(2020).
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information and the endogeneity in regressors at the same time.8

Aguirregabiria and Mira (2019) showed the identification of Bayesian games when
unobserved heterogeneity may also affect the selection between multiple equilibria,
thus leading to another source of endogeneity. In comparison, our CF method focuses
on endogenous covariates in a data-generating process without multiple equilibria,
and as such cannot be applied to deal with endogeneity in equilibrium selection. On
the other hand, unlike Aguirregabiria and Mira (2019), our CF method does not restrict
the support of the unobserved heterogeneity to be finite. Another major distinction is
that Aguirregabiria and Mira (2019) used methods from the finite mixture literature to
recover the players’ choice probabilities conditional on the unobserved heterogeneity
as an necessary step to identify players’ payoffs. In contrast, our CF method does not
require such a step, and can be used to estimate the payoff parameters in a simple
two-step procedure.

Our second contribution is to provide new empirical insights in a setting where
endogeneity in firm states affects the inference of competition effect. We apply
the 2SNPL estimator to analyze a hypothetical 2016 T-Mobile and Sprint merger
on cellphone technology deployment in a selected sample of mostly rural markets.9

During 2016 and 2018, AT&T, Verizon, T-Mobile and Sprint were the main competitors
in the U.S cellphone service industry. Having rolled out 4G-LTE technology across
the states, these firms were now strategically considering whether to enter the
remaining scattered markets left open to 4G-LTE deployment. The 4-to-3 merger
is clearly a mover-and-shaker event in this industry, which could substantially change
firm strategies of entering local markets. Our sample consists of isolated markets
that had not deployed the latest generation of cellphone technology at the time.
The geographically dispersed, isolated markets allow us to treat each market as an
independent entry game, so we can focus on the first-order question about the relation
between endogenous states and entry decisions on focal markets.10

Given the scope of our sample, our goal is not to assess the overall merger
effect on the industry level. Rather, we aim at providing insights to antitrust and

8The fixed-point algorithm is used to deal with simultaneity of strategic choices in discrete games
with incomplete information. See Rust (1987), Aguirregabiria and Mira (2002, 2007) and Kasahara and
Shimotsu (2012).

9T-Mobile and Sprint proposed a merger deal in 2019 and were approved to merge in 2020 after
lengthy legal battles surrounding antitrust concerns. In our simulations, we create a hypothetical
merger between these two firms by moving the 2020 merger to the end of 2015.

10A full account of large scale, interdependent entry of 4G-LTE entry across the states would require
modeling the providers’ strategic optimization of deployment on a national level.
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regulatory agencies who care about the possibility that merger exacerbates the urban-
rural digital divide. In addition to predicting firm entries in post-merger local markets
and the population served, we evaluate the impact of adding a fourth national
provider, enabled by a hypothetical government-mandated partial divestiture of assets
owned by the merging parties. This is a very meaningful exercise for antitrust and
regulatory agencies. For example, while reviewing merger proposals, the Federal
Trade Commission (FTC) and the Department of Justice (DOJ) have often mandated
that the merging firms divest certain assets and facilities to rivaling firms. The goal of
such a policy is to strengthen after-merger competition in local markets and to alleviate
the loss of consumer welfare due to increased market power of the merged entity.11 In
the case of the 2020 T-Mobile/Sprint merger decision, the DOJ required the merging
parties to divest parts of Sprint’s prepaid businesses, Sprint’s 800 MHz spectrum
holding, decommissioned cell sites and retail locations to a potential competitor, DISH
Network.

A crucial step in our analysis is to allow for endogeneity in providers’ network
investment while analyzing their strategic decisions to enter local markets. As
noted earlier, two covariates that influence strategic decisions are endogenous (3G
deployment in the focal market and 4G-LTE deployment in neighboring markets). Our
estimates indicate that unobserved factors in a firm’s 4G-LTE deployment decision are
negatively correlated with its focal market’s 3G deployment and positively correlated
with its 4G-LTE deployment in neighboring markets. Both correlations are statistically
significant, providing evidence for the endogeneity of these two covariates. These
covariates are directly impacted by the merger (the new entity owns a union of network
facilities of the merging parties). Thus, any sound analysis of the merger’s impact needs
to start with a valid, endogeneity-proof inference of covariate effects.

Using our endogeneity-proof estimates, we find that the hypothetical T-Mobile and
Sprint merger would substantially reduce the overall 4G-LTE deployment across local
markets in our sample, despite the merged firm becoming a strong competitor and
owning better assets after taking over Sprint’s cellular networks. This finding counters
a typical pro-merger argument that cost synergies lead to wider cellular coverage and
benefit consumers.12 Moreover, our simulations show that the addition of a fourth

11For example, in 2015, the FTC required Albertsons and Safeway to sell 168 stores in 130 local markets
as a condition for approving their $9.2 billion merger case.

12Our results are consistent with findings in Genakos, Valletti, and Verboven (2018), which used
mobile operators’ prices and accounting information across 33 OECD countries over a decade to show
that both prices and investment per operator increased after a merger and that total industry investment
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national firm, mirroring the DOJ’s DISH Network merger remedy through divestiture,
would not completely offset the merger’s negative impact on the population served
in our sample. Lastly, we compare the estimation and simulation results with and
without taking into account the endogeneity in network investment. This comparison
shows that, taking network investment as exogenous, one would overestimate the
total number of entry occurrences but underestimate the percentage of population
under-served under both the merger and the remedy. Ignoring such endogeneity in
estimation would, therefore, skew the policy implications for antitrust agencies toward
the merger and its proposed remedy.

As our work incorporates endogenous assets in oligopolistic firms’ strategic choices,
we build on the recent empirical literature in industrial organization that evaluates
how merger affects product offerings (Fan, 2013, Wollmann, 2018, Fan and Yang, 2020),
quality of service (Elliott, Houngbonon, Ivaldi, and Scott, 2021) and entry (Berry and
Waldfogel, 2001, Sweeting, 2010, Li, Mazur, Park, Roberts, Sweeting, and Zhang, 2019,
Ciliberto, Murry, and Tamer, 2021, Fan and Yang, 2021). Mergers, in the first place, are
consolidations of assets and resources, including production facilities, retail outlets,
investments, patents and more. Divestitures are the regulators’ responses aimed at
counteracting the increased concentration in post-merger assets distribution. Empirical
work evaluating the role of divestiture practices in merger cases is scarce, due partly
to the lack of data and partly to the lack of a tractable framework to account for the
endogeneity of assets and divestiture.13 To the best of our knowledge, our work is
the first to evaluate the role of assets and, more importantly, the role of divestitures in
firms’ strategic choices using a game-theoretic approach. More broadly, our empirical
method provides a very feasible solution to covariate endogeneity in discrete games
with incomplete information.

The paper is organized as follows. Section 2 introduces the discrete games with
incomplete information and endogenous states and characterizes the Bayesian Nash
equilibrium. Section 3 describes the two-step nested pseudo likelihood estimator
(2SNPL) and derives its asymptotic properties. Section 4 studies the 4G-LTE entry
game of AT&T, Verizon, T-Mobile and Sprint, comparing model estimates and policy

did not change significantly.
13Two recent academic papers provide descriptive evidence on the effects of divestitures: Tenn and

Yun (2011) compare pre- and post-divestiture performances of divested brands from the 2008 Johnson &
Johnson’s acquisition of Pfizer’s consumer health division; Soetevent, Haan, and Heijnen (2014) evaluate
the effects of the Dutch government’s divestiture requirement when allocating rights to operate highway
gasoline stations on prices of divested gasoline stations.
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implications with and without accounting for endogenous covariates. Section 5
concludes. All proofs, technical details, and robustness checks are rendered in the
appendices.

2 Discrete Bayesian Games with Endogenous States

2.1 The Model and Equilibrium

Consider a game of simultaneous discrete choices with incomplete information among
K players, indexed by k ∈ K ≡ {1, 2, ...,K}. Each player k is characterized by a dx × 1
vector of covariates Xk, which consists of a d1 × 1 vector of exogenous covariates Xk1,
and a d2×1 vector of endogenous covariates Xk2. Let Zk be a dz×1 vector of instruments,
with dz ≥ d2. Each player k observes a payoff shock, a.k.a. structural error, uk ∈ R,
and makes a simultaneous entry decision Yk ∈ {0, 1} based on the public information
I ≡ {Xk,Zk}k∈K and its individual shock uk.

A player k’s ex post payoff for Yk = 1 is

X′k1βk + X′k2γk + αk

∑
j,k

Y j + uk, (1)

and that for Yk = 0 is normalized to be zero. Payoff specification similar to Equation (1)
is common in the literature of empirical discrete games (see Berry (1992), Seim (2006),
and Jia (2008) for examples).14 The structural errors uk’s absorb all factors that affect
firms’ ex post payoffs but are not reported in the data. The instruments Zk do not enter
the ex post payoffs, but contribute to the endogenous variables as follows:

Xk2 = Π′k(X
′

k1,Z
′

k)
′ + Vk, (2)

where Π′k is a d2 × (d1 + dz) matrix of constant coefficients, and Vk contains player-
and/or game-level unobserved heterogeneity that affect the determination of Xk2. The
regressor Xk2 in Equation (1) is endogenous when Vk ∈ Rd2 and uk ∈ R are correlated.
Instrument validity requires the coefficients for Zk in Πk be non-zero.

The linearity of the auxiliary equation (2) is not essential for our method. The
control function method applies even when the linear index of (Xk1,Zk) on the right-
hand side of Equation (2) is replaced by a nonlinear function of (Xk1,Zk), provided the
control functions (CFs) Vk satisfy Assumption 1 below. In Section 4, we use a quadratic

14This tractable functional form is appealing, because it serves as a practical approximation of the
expected discounted value of a firm’s action. It is infeasible to construct a full-fledged engineering
model to investigate the action’s effect on a firm’s long-run profits. Besides, lack of data on firm-level
prices and quantities restricts the researchers’ ability to write down a more primitive payoff function.
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function of covariates in the first stage.
It is worth mentioning that our method also applies when the right-hand side of

equation (2) involves Z j for j , k, i.e., instruments specific to other players. In that case,
Vk is recovered as residuals by regressing Xk2 on Xk1 and (Z j) j∈K . Such a case is relevant,
for example, if the endogenous covariates (Xk2)k∈K are jointly determined through
player interactions even before the game, and can be represented or approximated
through a system of simultaneous equations.

In any pure-strategy Bayesian Nash equilibrium (psBNE), each player k follows a
decision rule Yk = 1{Y∗k > 0}:

Y∗k ≡ X′k1βk + X′k2γk + αk

∑
j,k

Ek(Y j|I,uk) + uk, (3)

where Ek(Y j|I,uk) is player k’s belief about others’ decisions, which is consistent with
the common prior of {u j} j≤K and others’ strategies in equilibrium. (We can generalize
by letting the strategic interaction term be a weighted sum of other players’ choice
probabilities — that is, by allowing the weights αk, j to differ across k as well as j.)

2.2 Identifying Assumption and Discussion

Our method for dealing with endogenous covariates in this model applies under
intuitive conditions on the unobserved errors, which we formalize as follows. Assume:

uk = gk(V;λk) + ηk for k = 1, 2, ...,K, (4)

where V ≡ {V j} j≤K, and gk(·) is a link function characterized by a parameter vector λk.
Note that in our model, uk, the structural payoff shock in player k’s information set,

should not be interpreted as the player’s private information. Instead, the idiosyncratic
error ηk in (4) represents de facto private information for player k after accounting for
the vectors in V, which can be recovered from the common information of (X,Z) using
(2). In this sense, V’s are effectively public information for all players.

Assumption 1. (i) {uk,Vk}k≤K are independent of X1 = {Xk1}k≤K and Z = {Zk}k≤K with zero
means. (ii) Equation (4) holds with η ≡ {ηk}k≤K independent from V, and ηk independent across
the players.

Part (i) of this assumption posits instrument exogeneity; the zero means of uk and
Vk are necessary location normalization when an intercept is included in the exogenous
covariates Xk1. Part (ii) posits that the residual private information, after accounting
for unobserved heterogeneity in V in the structural payoff shocks uk, are independent
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from such unobserved heterogeneity. This condition ensures V serves as valid control
functions, despite correlation between players’ payoff shocks and strategic interaction
in equilibrium. Part (ii) also requires the residual private information to be independent
across individual players. We will show how Assumption 1 can be satisfied in our
model under more primitive conditions below.

It is important to note that Assumption 1 allows the error vectors {uk,Vk}k≤K to
be correlated across players through the control functions {Vk}k≤K. In particular, this
allows Vk to be correlated through payoff-relevant information (such as market shocks
or heterogeneity) that is commonly observed to all players but not reported in the
data. This differs from single-agent models where observations of individual decision
makers are considered independently and identically distributed.

Assumption 1-(ii) is flexible enough to accommodate different forms of endogeneity
in Xk2, including those due to player-level or game-level unobserved heterogeneity. For
example, consider a data-generating process where V j is arbitrarily correlated across
players j ≤ K, through game-level unobserved heterogeneity. Suppose for each player k,
uk is a polynomial function of {V j} j≤K (with a known degree) plus idiosyncratic noises
ηk, which are independent across the players and jointly independent of {X1,Z,V}.
Then Assumption 1 hold with λk in (4) being the polynomial coefficients.

Assumption 1-(ii) also allows for endogeneity caused by unreported individual
heterogeneity, even under more restrictive special cases of linear link functions:

gk(V;λk) =
∑
j≤K

V′jλk, j, (5)

where λk ≡ {λk, j} j≤K are constant coefficients. For example, suppose {uk,Vk}k≤K are
independent across the players. If, for each player k, the vector {uk,Vk} is multivariate
normal with non-zero correlation between uk and Vk (e.g., because of correlation
through unobserved characteristics of player k), then Assumption 1 is satisfied with
λk,k being coefficients in a linear projection of uk onto Vk, and λk, j = 0 for j , k.

More generally, Assumption 1-(ii) can also hold with a link function in (5) when
(uk,Vk) are correlated among the players. To see this, suppose u,V are jointly
distributed as multivariate normal, with covariances Σu and ΣV and cross-covariance
ΣVu. Assumption 1-(ii) holds with a linear link function in (5) if Σu − (ΣVu)′(ΣV)−1ΣVu is
diagonal. With u ∈ RK and V ∈ RL, this amounts to K(K − 1)/2 equality constraints on
K(K − 1)/2 + L(L − 1)/2 + KL free parameters in Σu,ΣV,ΣVu.

Some earlier works dealt with market-level heterogeneity in discrete games by
modeling how they enter in the payoffs and equilibria selection mechanism (see
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Aguirregabiria and Mira, 2007, Arcidiacono and Miller, 2011, Collard-Wexler, 2013,
Igami and Yang, 2016, Aguirregabiria and Mira, 2019). Our approach differs in that we
accommodate such heterogeneity in the structural errors of players’ payoffs without
imposing further restrictions (other than Assumption 1).

2.3 Identification via Control Functions

For the rest of the paper, we present identification and estimation results for the case
where the Assumption 1 holds with a linear link function as in (5). As mentioned in
Section 2.2, this can be justified in certain settings where the payoff shock u and the
control functions V are multivariate normal. Generalization to known, flexible forms
in (4) would not pose any new conceptual challenge, and is left for future investigation.

Using Assumption 1, we write the decision rule in (3) as

Yk = 1{Y∗k > 0} = 1
{
X′k1βk + X′k2γk + αk

∑
j,k

Ek(Y j|I) +
∑
j≤K

V′jλk, j + ηk > 0
}
. (6)

Note that the two conditions in Assumption 1 imply that ηk is independent of
{X j,V j} j≤K and, consequently, from I. Besides, the independence of ηk across players
in Assumption 1-(ii) implies that the equilibrium belief Ek(Y j|I,uk) = Ek(Y j|I), and does
not depend on the residual private information {η j} j,k.15

Let Fk and fk denote the marginal distribution and the density function of ηk,
respectively. Thus, we characterize a pure-strategy Bayesian Nash Equilibrium
(psBNE) through a vector of conditional choice probabilities (CCPs) P : I 7→ [0, 1]K

that solves a fixed-point equation:

P = Γ(θ,P), (7)

where Γ ≡ (Γ1, ...,ΓK)′ with

Γk(θk,P) ≡ 1 − Fk

(
− X′k1βk − X′k2γk − αk

∑
j,k

P j −

∑
j≤K

V′jλk, j

)
, (8)

and θ ≡ {θk}k≤K with θk ≡ (γ′k, β
′

k, α
′

k, λ
′

k). The model admits a unique psBNE under the
following condition.

Assumption 2. For each k, |αk| < 1
(K−1)| supt fk(t)| .

Our estimator works as long as the sample data is generated from a single
equilibrium. Assumption 2 restricts the strength of interaction between players so

15Conditional on I, the values of {Vk}k≤K are fixed. Hence “conditioning on I and uk” is equivalent to
“conditioning on I and ηk.” The claim then follows from the independence conditions in Assumption 1.
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that Γ is a contraction mapping and the uniqueness of psBNE is guaranteed. Such
uniqueness is crucial for counterfactual simulation.16

Let P∗ denote the profile of conditional choice probabilities in a Bayesian Nash
equilibrium. Identification using Equations (7) and (8) requires the usual rank
conditions. That is, the support of the vector (X′k1,X

′

k2,
∑

j,k P∗j,V
′

1, · · · ,V
′

K) is not
contained in a linear subspace. Note that this rules out the cases in which the
coefficients for Zk in the matrix Πk are all zeros. This requires a necessary order
condition: there are more instruments in Zk than endogenous covariates in Xk2.

The aforementioned rank condition for recovering payoff parameters holds
generically, even with the instruments being on the market level (i.e., Zk = Z0 does
not vary across players k) and having small support (e.g., Z0 ∈ {0, 1}). To see this,
note that {Xk1,V1,V2...,VK} are all exogenous variables, that Xk2 is a function of Xk1 and
the instrument Z0, and that expected competition

∑
j,k P∗j is determined in equilibrium

as a non-linear function of a larger vector including other players’ exogenous variables
{X j1,V j} j≤K as well as Z0. Because the joint variation of {X j1,V j} j≤K and Z0 is not confined
to any linear subspace, and because of the non-linearity of

∑
j,k P∗j in these arguments,

the rank condition is expected to hold generically.17

By Assumption 1-(i), {Vk}k∈K can be recovered directly as the residuals in the
regression of Xk2 on (Xk1,Zk) in Equation (2), and therefore treated as known covariates
for subsequent identification. Aradillas-Lopez (2010) and Bajari, Hong, Krainer, and
Nekipelov (2010) provide two distinct sets of conditions under which the players’ ex
post utility functions are identified.

2.4 Further Discussion: Extensions

We conclude this section with remarks about extensions of our method. First,
the identification of this model using our control function (CF) approach does not
require parametric assumptions on the distribution of ηk. In principle, one can

16Assumption 2 is similar to the Moderate Social Influence (MSI) condition in the interaction game
literature (see Glaeser and Scheinkman, 2003, Horst and Scheinkman, 2006). It is used in the discrete
game literature (Brock and Durlauf, 2001, Lee, Li, and Lin, 2014, Lin and Xu, 2017, Xu, 2018, Jackson,
Lin, and Yu, 2022, Lin, Tang, and Yu, 2021) for the uniqueness of Bayesian Nash equilibrium.

17With Zk = Z0 not varying across k, and with dz as small as possible (i.e., dz = d2), a vector that consists
of the endogenous states {X j2} j≤K for all players and a full set of all exogenous variables {{X j1} j≤K,Z0}

is linearly dependent. This is because in such cases Xk2 can be expressed as a linear function of other
X j2, j , k and the full set of all exogenous variables. However, this does not pose an issue to the
rank condition for identification mentioned above, because the vector (X′k1,X

′

k2,
∑

j,k P∗j,V
′

1, · · · ,V
′

K) only
includes Xk2 and Xk1 for a single player k while all other {X j1,X j2} j,k are conditioned on in P∗j non-linearly.
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apply the semiparametric estimators in Aradillas-Lopez (2010) to the reduced form in
equation (6) after plugging in estimated control functions Vk as additional covariates.
However, the derivation of the asymptotic property of such a semiparametric estimator
that accounts for the first-step estimation of CFs is beyond the scope of this paper.
Instead, we choose to focus on a tractable version with a parametric distribution of ηk

in order to highlight the merits of the CF method mentioned earlier.

Second, we can extend the CF method to similar games with incomplete information
where the endogenous states are discrete rather than continuous. The most intuitive
and feasible way to do so is by introducing parametric assumptions (such as multi-
variate normal) on the joint distribution of (uk,Vk). In this case the control function
variables take the form of the correction terms in Heckman (1978). Recently, Lin and
Tang (2022) applied CFs for estimating a social interactions model where all group
peers receive an endogenous binary treatment. Gu, Li, Lin, and Tang (2022) apply CFs
to identify peer effects in social interactions models with endogenous sample selection.
They also generalize the CF method to allow for correlated group fixed effects. The
structural form of outcomes in those social interactions models is qualitatively different
from the discrete games with incomplete information in this paper. Nevertheless, with
appropriate changes, the CF approaches in those papers can be adjusted for use in the
current context of discrete games.

3 Estimation

Consider a sample of n independent games i = 1, 2, ...,n, each involving K players
making simultaneous binary decisions. Throughout this section, we use lower-case
letters to denote the realization of random vectors in the sample. In each game i and
for each player k, the sample reports a binary choice yk,i, endogenous variables xk2,i,
and exogenous covariates and instruments (xk1,i, zk,i). Let Ii = {xk,i, zk,i}k≤K denote the
information set that is common knowledge shared by all players in a game.

Let Θ and P ⊆ [0, 1]K×|X|×|Z| denote the parameter spaces for θ and P, respectively,
with X,Z being marginal support of Xk,Zk. Let θ0 ∈ int(Θ) denote the true value of
θ in the data-generating process (DGP), and let P0

≡ {Pr{Y = y|I = (x, z)} : (y, x, z) ∈
{0, 1}K × XK

× Z
K
} denote the actual equilibrium choice probabilities given θ0 in the

DGP.

Assumption 3. (i) For any θ , θ0 and P(θ) that solves P = Γ(θ,P), P(θ) , P(θ0) ≡ P0;
(ii) common knowledge variables Xi and Zi have finite supports, denoted as X and Z; (iii)
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(Yi,Xi,Zi)n
i=1 are independent across games, and Pr{Ii = (x, z)} > 0 for all (x, z) ∈ XK

× Z
K.

(iv) ηk,i are i.i.d. standard normal.

Assumption 3(i) is a standard identification condition for estimating games in
which the equilibrium is characterized by the solution to a fixed-point problem. See,
for example, Assumption 5(C) in Aguirregabiria and Mira (2007) and Assumption 1(e)
in Kasahara and Shimotsu (2012). Other papers on asymptotic properties of nested
pseudo likelihood estimators in discrete games also assume finite support of states
— e.g., Assumption 4 in Aguirregabiria and Mira (2007) and §2.1 in Kasahara and
Shimotsu (2012). Assumption 3(iv) adopts a normal parametrization of the distribution
of ηk,i. The zero mean of ηk,i is implied by conditions on (uk,Vk) in Assumption 1(i); the
unit variance of ηk,i is a necessary scale normalization for estimation. In principle, one
may use a different parametrization of the distribution of ηk,i, e.g., standard logistic.

We propose a two-step nested pseudo likelihood (2SNPL) estimator that builds
on a sequential algorithm combining the nested pseudo likelihood estimator in
Aguirregabiria and Mira (2007) with the two-stage conditional maximum likelihood
in Rivers and Vuong (1988). The pseudo likelihood is:

Ln(θ,P; Π) =
1
n

n∑
i=1

li(θ,P; Π),

where li(θ,P; Π) ≡
∑K

k=1 log fk,i(θ,P; Π), with Π ≡ {Πk}k≤K and fk,i(θ,P; Π) defined as

Pr{x′k1,iβk + x′k2,iγk + αk

∑
j,k

P j +
∑
j≤K

(x j2,i −Π′j(x
′

j1,i, z
′

j,i))
′λk, j + ηk,i > (≤)0}

if yk,i = 1 (yk,i = 0). Note that in the definition of fk,i, the probability measure relates to
the marginal distribution of ηk,i, and (xk, zk) are fixed realizations.18

With a slight abuse of notation, we let Γ(θ,P; Π) denote the mapping Γ(θ,P)
as defined in Equation (8) when V j is replaced by its identifiable counterpart
X j2 − Π′j(X

′

j1,Z
′

j)
′. This emphasizes how the mapping depends on the first-stage

parameter Π.
Our 2SNPL estimator is defined as follows. In the first stage, regress xk2,i on (xk1,i, zk,i)

to estimate Π̂k for each k ≤ K. In the second stage, plug Π̂ ≡ {Π̂k}k≤K into an iterative
algorithm in Aguirregabiria and Mira (2007) to construct a 2SNPL sequence of estimators
as follows:

Step 1. Pick an initial guess P̂0 for P0. For example, one can obtain such an

18The term “pseudo likelihood” is used because the argument P in Ln may be an arbitrary profile of
choice probabilities, not necessarily the equilibrium choice probabilities P0.
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initial guess from a reduced-form probit regression without endogenous covariates
and strategic interactions terms.

Step 2. For each s ≥ 1, calculate an s-stage estimator for θ as

θ̂s = arg max
θ∈Θ

Ln(θ, P̂s−1; Π̂), (9)

and update the choice probabilities recursively as

P̂s = Γ(θ̂s, P̂s−1; Π̂). (10)

If the initial guess P̂0 is a consistent estimator for the actual P0 in the DGP, then all
elements in the sequence of estimators are consistent for θ0. This follows from a similar
argument for the consistency of two-step pseudo maximum likelihood estimators in
Proposition 1 of Aguirregabiria and Mira (2007).

More importantly, there exists a neighborhood around P0 such that, starting from
any initial guess P̂0 in that neighborhood, the NPL sequence constructed above
converges almost surely to a root-n consistent and asymptotically normal (CAN)
estimator, which we refer to as a 2SNPL estimator and characterize in the next paragraph.

Define a 2SNPL operator associated with the iterations in (9) and (10):

φn(P) ≡ Γ(θ̃n(P),P; Π̂), where θ̃n(P) ≡ arg max
θ∈Θ

Ln(θ,P; Π̂). (11)

The set of 2SNPL fixed points in a sample is defined as Λn ≡ {(θ̆, P̆) ∈ Θ × P : P̆ =

φn(P̆) and θ̆ = θ̃n(P̆)}. If the maximizer θ̃n(P) is unique for any P and Π̂ from a given
sample, then the mapping θ̃n is continuous by the theorem of maximum. Thus, the
2SNPL operator φn(·) is continuous in the compact and convex set [0, 1]K·|X|·|Z|

≡ P. It
follows from Brouwer’s fixed-point theorem that Λn is non-empty. We define a 2SNPL
estimator (θ̂2SNPL, P̂2SNPL) as the element in Λn that leads to the highest value of pseudo
likelihood.

For discrete games with incomplete information but no endogenous covariates, the
econometrics literature proposed two-step estimators, with the first step involving
nonparametric (e.g., kernel-based) estimates of the players’ conditional choice
probabilities (CCPs) in equilibrium. Examples include Aradillas-Lopez (2010) and
Bajari et al. (2010). In principle, it is possible to adjust those methods for our case
by incorporating the control functions. However, in our empirical context, kernel
estimation of CCPs in the first step would be costly due to the curse of dimensionality
(i.e. the number of covariates conditioned on in CCPs is large). In comparison, the
iterative algorithm in our 2SNPL estimator can be applied using other flexible initial
estimators of CCPs (e.g. flexible logit with a polynomial series of covariates) under
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the conditions in Theorem 1 and Theorem 2. This reduces the computation costs, and
is shown to achieve fast convergence and stability in practice. We hope the 2SNPL
estimator could complement existing methods for estimating discrete games with
incomplete information in the same way the nested pseudo likelihood estimator in
Aguirregabiria and Mira (2007) complements CCP-based methods in Hotz and Miller
(1993) for dynamic models.

3.1 Asymptotic Properties of the 2SNPL Estimator

Let Π0 denote the true value of Π in the DGP. For simplicity, we also use Π,Π0 to denote
their own vectorization, in which case Π,Π0 are K × d2 × (d1 + dz) vectors. Define the
population counterparts of Ln, θ̃n, φn by

L0(θ,P) ≡ E
[
li(θ,P; Π0)

]
;

θ̃0(P) ≡ arg max
θ∈Θ

L0(θ,P) ; φ0(P) ≡ Γ(θ̃0(P),P; Π0).

The set of 2SNPL fixed points in the population is Λ0 ≡ {(θ,P) ∈ Θ × P : θ =

θ̃0(P) and P = φ0(P)}. Let sθ,i ≡ ∇θli(θ0,P0; Π0), and define

Ωθθ ≡ −E
[
∇

2
θθli(θ0,P0; Π0)

]
= E

(
sθ,is′θ,i

)
;

ΩθP ≡ −E
[
∇

2
θPli(θ0,P0; Π0)

]
= E

(
sθ,is′P,i

)
where sP,i ≡ ∇Pli(θ0,P0; Π0);

ΩθΠ ≡ −E
[
∇

2
θΠli(θ0,P0; Π0)

]
= E

(
sθ,is′Π,i

)
where sΠ,i ≡ ∇Πli(θ0,P0; Π0).

The equalities following the definition above are due to the information matrix equality
with regard to the vector of scores. We denote the Jacobian matrices evaluated
at the true value (θ0,P0; Π0) as Γ0

P ≡ ∇P′Γ(θ0,P0; Π0), Γ0
θ ≡ ∇θ

′Γ(θ0,P0; Π0), and
Γ0

Π
≡ ∇Π′Γ(θ0,P0; Π0). Define M ≡ Ωθθ + ΩθP(I − Γ0

P)−1Γ0
θ. We establish the asymptotic

property of θ̂2SNPL under the following regularity conditions.

Assumption 4. (i) Θ is a compact convex subset of a Euclidean space, and P is a compact
convex subset of (0, 1)K·|X|·|Z|; (ii) E

[
supθ,P |li(θ,P; Π0)|

]
< ∞. (iii) (θ0,P0) is an isolated

population NPL fixed point (i.e., it is unique, or else there is an open ball around it that does
not contain any other element of Λ0); (iv) there exists a closed neighborhood of P0, denoted by
N(P0), such that, for all P inN(P0), L0(θ,P; Π0) is globally concave, and its second derivative
with respect to θ is a nonsingular matrix; (v) the operator φ0(P)−P has a nonsingular Jacobian
matrix at P0; (vi) M is nonsingular.

Recall that Π̂ consists of 1st-stage ordinary least squares (OLS) estimates and,
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therefore, admits a linear, first-order asymptotic representation as

√
n(Π̂ −Π0) =

1
√

n

n∑
i=1

ri(Π0) + op(1),

where ri(Π0) ≡ r0,i is the influence function characterizing the limit distribution of the
OLS estimator.

Theorem 1. Under Assumptions 1 to 4, θ̂2SNPL is a consistent estimator, and
√

n(θ̂2SNPL − θ0) d
→ N

(
0,M−1E(s̃is̃′i)

(
M−1

)′ )
,

where

s̃i ≡ sθ,i − [ΩθP(I − Γ0
P)−1Γ0

Π + ΩθΠ]r0,i.

Proof. See Appendix A. �

The proof of the theorem amounts to writing down the first-order conditions and
the equilibrium constraints that define the 2SNPL estimator, and then using a first-
order expansion to account for the impact of the first-stage estimator Π̂, as well as the
concurrent iteration over conditional choice probabilities.

Similar to Kasahara and Shimotsu (2012), we can establish the following
convergence property of the 2SNPL sequence.

Theorem 2. Suppose that Assumptions 1 to 4 hold and Ωθθ is nonsingular. There
exists a neighborhood N around P0 such that, starting from any initial value P̂0 ∈ N ,
lims→∞P̂s = P̂2SNPL almost surely.

The contraction mapping property from Assumption 2 implies thatρ(Γ0
P) < 1, where

ρ(·) is the spectral radius function. The key condition for convergence in Proposition
1 of Kasahara and Shimotsu (2012) holds.19 With uniform convergence of Ln(·; Π̂) to
L0(·) established in the proof of consistency in Theorem 1 (see Appendix A), the proof
of Theorem 2 follows from the same steps in Kasahara and Shimotsu (2012) and is,
therefore, omitted for brevity.

4 Empirical Study: An Entry Game of Cellphone Service

Providers

In this section, we illustrate how our method, which takes account of endogenous
covariates, provides new insights in policy analyses in a setting where oligopolistic

19See Section 2.3 of Kasahara and Shimotsu (2012) for more discussion.
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firms compete through strategic 4G-LTE deployment decisions in local markets. We
model this deployment decision as an entry game with incomplete information because
each firm observes its firm-and-market-specific shocks in the deployment payoff but
not necessarily those shocks to its rivals. Other papers using similar information
structures for investigating firm entry decisions in different contexts include Seim
(2006) and Sweeting (2009). We model the competition between four national cellphone
service providers in the U.S.: Verizon Wireless, AT&T Mobility, T-Mobile US and Sprint
Corporation (collectively referred to as the “Big Four”).20 The time period we study
is from 2015 to 2018, a few years before the proposal of a T-Mobile and Sprint merger
in 2019, which eventually went through in early 2020 after lengthy legal battles over
antitrust concerns.

In this industry, firms make capital investments in cellular networks and
transmission facilities in a specific geographic area before providing services to
consumers in that area. Such investments have typically been made in accordance
with the dominant technology of the time. For example, throughout most of the 2000s,
the third generation of cellphone technology (3G) was the predominant technology,
utilizing the 1850 - 1990 MHz spectrum range. Starting from roughly 2010, it was
time for the next generation of technology, 4G-LTE.21 A firm with 3G deployment in a
local market can repurpose the spectrum used by 3G to support 4G-LTE and can utilize
existing facilities, such as cell towers, with upgraded equipment. Such investment also
involves some spatial consideration. For example, extending coverage from central
Phoenix to nearby cities and towns would be easier than providing de novo services to
these markets. We measure a potential entrant’s network investment for a local market
by the firm’s 3G deployment in the focal market and 4G-LTE deployment in nearby
markets. These two sets of network investments are the firm-specific, endogenous
covariates we focus on in our empirical framework. They are important determinants
of a firm’s decision to provide a new generation of technology in a local market, driven
by similar unobserved heterogeneity that underlies a firm’s entry decision.

In the following subsections, we describe the background of the U.S. cellphone

20We will refer to them as Verizon, AT&T, T-Mobile and Sprint henceforth. These cellphone service
providers are also known as mobile network operators, wireless service providers, wireless carriers,
cellular companies, mobile network carriers, etc. In this paper, we refer to them as firms, providers, and
carriers interchangeably.

214G-LTE stands for the fourth generation, Long Term Evolution. LTE is the technology to deliver
4G standards, defined as having peak upload and download speeds of at least 100 mbps (mega bits
per second). 4G-LTE is still not fully 4G, but is considered the closest to 4G standards by international
telecommunications communities.
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service industry, the policy relevance of our empirical application, the data we
construct, and the empirical specification we use. In particular, we evaluate a
counterfactual experiment in which T-Mobile and Sprint merged in 2016, which
would have led to different 4G-LTE deployment paths in markets that these firms
had not yet entered in 2016. We discuss the discrepancies in policy implications
and recommendations with and without accounting for the endogeneity in network
investment.

4.1 The U.S. Cellphone Service Industry at a Glance

Up until April 2020, Verizon, AT&T, T-Mobile and Sprint were the four major cellphone
service providers in the United States. There were also a few regional providers, such
as U.S. Cellular and C Spire Wireless, and a fringe of local providers, such as Cricket
Wireless and TracFone Wireless, which often offered flexible, more economical prepaid
plans. Compared to the Big Four, the other providers’ network deployment and market
presence were almost negligible.22

A consumer (or a household) chooses a plan offered by a provider, considering
prices, coverage, speed and customer service. A plan typically ranges from $30 to
$100. Among the Big Four, Verizon and AT&T were known for the best coverage, while
T-Mobile and Sprint were seen as offering comparable deals with lower prices but less
coverage. The Federal Communications Commission (FCC) is the main regulator of
this industry, while the Department of Justice (DOJ) and the Federal Trade Commission
(FTC) share the responsibility for evaluating anti-competitive conduct in this industry.

4.2 Cellular Network Investment

A cellular network is composed of cellphones, base transceiver stations (“cell
sites”), mobile telephone switching offices, and the public switching telephone
network.23 When joined together, cellular networks provide radio coverage over a
wide geographic area, enabling cellphones to communicate with each other. Globally,
major telecommunications providers have deployed cellular networks over most of
the inhabited land area on Earth.

Building a cellular network takes decades of physical and financial investment from
22The Big Four and US Cellular are the only Mobile Network Operators (MNOs) in the continental U.S.

— that is, providers that own and control the spectrum licenses and network infrastructure necessary
to provide services to subscribers. All other cellphone providers in the U.S. are Mobile Virtual Network
Operators (MVNOs), relying on other firms’ network infrastructure to provide services.

23We explain the components and evolution history of cellular networks in Appendix C.
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a provider. In the past few decades, mobile wireless technologies have experienced
multiple generations of evolution — namely, from 0G to 5G. In the 2000s, 3G technology
was implemented, enabling media streaming with high connection speed. From the
start of the 2010s, 4G-LTE was rolled out gradually, accounting for more than half
of mobile connections, hitting 52% for the first time in 2019.24 Cellular networks
need to be maintained and updated constantly, with a substantial cost for sustaining
network operation. The Global System for Mobile Communications (GSM) Association
projected in 2020 that global network operators would invest more than $1.1 trillion in
their networks in the next five years.

During our study period, from 2015 to 2018, 4G-LTE grew to be the dominant
network technology. The Big Four have constructed their main 4G-LTE networks,
but even extending services to an unserved local market from this main network
involves millions to billions of dollars. A potential entrant for a local market needs
to first acquire spectrum licenses, depending on the size of the market served.25 A
provider then needs to build cell sites, purchase radio transmitters and receivers, and
acquire access to intermediate links connecting different wired networks (“backhaul”).
The firm also must build a distributional network and market its services to retail
consumers. To sum up, the biggest hurdle of deploying a new network technology is
the substantial costs involved; these costs can become prohibitive in areas with low
population density and rugged terrains. Retiring technologies of previous generations
can free up spectrum and existing facilities to accommodate the next generation of
technology; at the same time, deploying a new technology in a cluster of nearby
markets, simultaneously or sequentially, helps a provider to achieve economies of
scale. For these reasons, it is essential to incorporate the “network investment” effect
in a potential entrant’s evaluation of the expected payoff from entering a local market.
When we study providers’ decisions to enter local markets, not accounting for the
network investment factor means ignoring a first-order difference between Verizon, an
industry leader, and Cricket Wireless, a fringe player.

24Industry experts predict that 4G will peak at just under 60% by 2023 (The GSM Association
Intelligence, “The Mobile Economy 2020.”)

25A spectrum license gives its holder the exclusive option to use a certain range of frequencies in a
well-delineated geographic area. A firm can purchase these licenses in the FCC spectrum auctions or
acquire them in secondary markets through purchase or renting. Xiao and Yuan (2021) describe the
2008 FCC auction as selling off 700 MHz, which was used mainly for 4G-LTE deployment.
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4.3 T-Mobile and Sprint Merger: Policy Considerations

T-Mobile and Sprint announced a merger deal of $26 billion on April 29, 2019. The
proposed merger would reduce the number of national providers from four to three,
leading to antitrust concerns by state governments and regulating agencies.26 The
merging parties claimed a substantial saving of $43.6 billion via cost synergies, which
would allow the merged firm to become a stronger competitor against Verizon and
AT&T. Proponents of this merger argued that it would generate broader coverage,
greater capacity, higher service quality and a rapid deployment of a nationwide 5G
network (Wallsten, 2019). Opponents argued that the reduction in the number of
providers would lead to higher prices, fewer choices, lower quality, and a slow roll-out
of 5G services.27

On July 26, 2019, the DOJ approved the merger after T-Mobile and Sprint reached
an agreement to sell Sprint’s branded prepaid business,28 Sprint’s entire 800 MHz
portfolio, and other assets to the DISH Network (“DISH” henceforth). The DOJ
believed that DISH’s previous spectrum holdings and the divested assets from the
merger would help DISH become the fourth national provider. The DOJ also prescribed
detailed operational instructions for DISH to enter as a facilities-based provider instead
of just a reseller.29 The DOJ argued that this remedy would restore the ex ante
competitive market conditions before the merger. Judge Victor Marrero of the U.S.
District Court cited the DOJ’s remedy as a key factor in approving the merger, noting
that it made DISH “well poised to become a fourth [Mobile Network Operator] in
the market, and its extensive preparations and regulatory remedies indicate that it
can sufficiently replace Sprint’s competitive impact”. However, opponents questioned
the effectiveness of this remedy, calling it “exceedingly optimistic” (Economides et al.,
2019) or stating “the Court may have erred in treating DISH as a merger-induced
entrant” (Caradonna, Miller, and Shue, 2021).

26Internationally, the telecommunications industry has experienced a wave of consolidation activities
recently. Most notably, the European Commission allowed four-to-three mergers in the Netherlands,
Austria, Ireland, Germany and Italy, but blocked a similar merger in Denmark (Genakos, Valletti, and
Verboven, 2018).

27DOJ Complaint, U.S. et al. v. Deutsche Telekom AG, T-Mobile Us, Inc., Softbank Group Corp., and
Sprint Corporation, No. 1:19-cv-02232, at 3 (D.D.C. Jul. 26, 2019) Case 1:19-cv-02232, July 26, 2019.

28This includes Boost Mobile and Virgin Mobile, representing 9.3 million consumers.
29The DOJ imposes on the merging parties an obligation to permit DISH to operate as a reseller on

the merged firm’s wireless network for the entire seven-year term of the settlement. DISH promised to
comply with the network build commitments made to the DOJ by 2023. If DISH’s own network does
not serve 70% of the country by then, it will face penalties of up to $2.2 billion.
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On October 18, 2019, the merger received formal approval from the FCC in a 3-2
commissioner vote, but attorney generals from 14 states soon filed lawsuits to block the
merger. After lengthy negotiations with the states and the DOJ, the merger officially
closed on April 1, 2020, with the Sprint brand discontinued on August 2, 2020.

Evaluating the overall effects of the merger on a national level is beyond the
scope of this paper. Instead, we focus on evaluating a key claim of the merger’s
benefit: it would strengthen competition in rural areas and alleviate the inequality
in cellular infrastructure across the states (Wallsten, 2019). The pre-merger T-Mobile
and Sprint did not have sufficient assets and coverage to compete effectively with
the industry leaders, especially in rural areas.30 The merged firm, aided by “the
unique combination of spectrum, sites and equipment of T-Mobile and Sprint”,31 would
become a comparable rival to AT&T and Verizon. Opponents of the merger, such as
the Rural Broadband Association, argued that T-Mobile had shown little incentive to
invest in rural areas, and, therefore, its incentives were unlikely to change following
this merger.

We investigate how a hypothetical T-Mobile and Sprint merger in 2016 would
have affected the 4G-LTE deployment on local markets that had not been served by
most national providers by then. As discussed above, cellphone coverage in unserved
and underserved markets is a major policy consideration evaluating the 2020 merger
case. No direct empirical evidence, however, is available to support either side of
the argument. We also evaluate the remedy proposed by the DOJ, which divests
assets from the merger to support DISH as a national provider. We exploit data and a
structural model of discrete games with incomplete information to analyze the impact
of the hypothetical merger and remedy, taking into account the firms’ post-merger
network consolidation and strategic responses.

4.4 Data Sources

We use three publicly available data sets to construct our sample. The first is the FCC’s
Mobile Deployment Form 477 Data from 2015 to 2018, which reports semi-annually
each provider’s 2G-4G coverage in every U.S. census block.32 The FCC requires all

30The FCC reported that in December 2016, more than 98% of rural Census blocks had at least one
LTE provider, but only 57% had at least four providers, compared to 96% of non-rural blocks.

31T-Mobile and Sprint, “Description of Transaction, Public Interest Statement, and Related
Demonstrations”, June 18, 2018, page 16.

32The FCC started to report the Mobile Deployment (including both voice and broadband) data from
December 2014, but 2015 was the first year that the FCC reported the actual area coverage within a
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facilities-based broadband providers to file Form 477, which discloses where they
offer Internet access service at speeds exceeding 200 kbps in at least one direction. In
particular, for each mobile network technology deployed in each radio frequency band,
facilities-based mobile providers must submit polygons representing their nationwide
coverage area of that technology and the advertised data upload and download speeds.
Providers’ submission of data is mandatory, and they must certify the accuracy of the
data submitted.

With providers’ submitted data on coverage polygons, the FCC reports the
percentage of the area in a census block covered by each technology (including 2G,
3G, 4G-non-LTE,33 and 4G-LTE) by each provider, using a computationally intensive
process.34 In addition, the FCC reports the percentage of a census block covered by
“any” technology. From December 2015 to December 2018, the FCC data provide
seven snapshots of each firm’s granular-level network deployment information. Each
snapshot of data has about 45 million observations at the firm-census block level.

The second data set is the 2016 American Community Survey. We obtain aggregate
demographic variables such as population size, age, gender and ethnicity profiles,
income, and commuting patterns that are potential determinants of a consumer’s
cellphone use. The third data set is the 2000 Population Census. We use the same
variables as the ones we obtain from the 2016 American Community Survey to
construct our instrument variables – the lagged demographics of neighboring markets
– for endogenous network investment variables. Using information from neighboring
markets as instruments is common in industrial organization literature, (e.g. Nevo,
2001). For both data sets, we obtain demographic variables at the census tract level.

4.5 Variable Definition and Sample Construction

With the raw data, we define open markets for 4G-LTE deployment by the four major
national providers and then merge in demographic variables at the census tract level.

census block by each provider. Much of the information presented in the data description is based on
the FCC’s Public Notice (DA 16-1107), released on September 30, 2016.

334G-non-LTE refers to technologies that do not reach 4G standards but were marketed as 4G by
cellphone providers. 4G-non-LTE will be ultimately replaced by 4G-LTE. Sprint and Clearwire, for
example, invested in WiMax rather than LTE and had to rebuild their 4G networks.

34The FCC first removes the spectrum and speed information from each shapefile filed by a provider,
and then consolidates different polygons for a particular technology for a particular provider into a
single, unique polygon. The FCC then determines how much of a census block is covered by this unique
polygon. The FCC has not calculated how much the coverage reported for one technology does or does
not overlap with coverage of another technology — e.g., 2G and 3G overlap within a census block.
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4.5.1 Local markets: census tracts

Our first task is to define a local market. On the demand side, we take advantage of
the immobile demand of the cellular services — a typical consumer would only order
services from providers which offer service in their neighborhood. But how large is
exactly a neighborhood? A census block, a census tract, or an entire county? We resort
to the supply side to refine our market definition. In this study we investigate the
marginal decision of a provider to deploy 4G-LTE to additional market. This is a local
investment decision, not an overall entry/exit decision. The definition of a local market
then boils down to the question that at what geographical level sunk costs of serving
an area are committed.

A census block is the smallest geographic unit in the U.S. Census, amounting to
more than 11 million observations in the 2010 Census. A census block is typically a
very small geographic area; for example, it is often a city block bounded on all sides
by streets, and we do not think that deployment decisions are made on such a fine-
grained geographic basis. We therefore consider a larger market concept: the 73,057
census tracts in the U.S.. A census tract is designed to be a relatively homogeneous unit
with respect to population characteristics, economic status and living conditions. In
general, each census tract encompasses 2,500 to 8,000 people.35 A census tract usually
covers a contiguous area; however, the spatial size of census tracts varies widely
depending on the density of the settlement. A rough estimate of the radius of a typical
census tract is 6.5 kilometers.36 Although cell towers have a maximum range of 50 to
70 kilometers, they are typically spaced two to three kilometers apart to adequately
handle cellphone traffic.37 A county is simply too large and too heterogeneous for
the definition of a local market. Based on the above comparison, we define census
tracts as geographic markets based on which cellphone providers make investment
and network deployment decisions.

We use the December editions of the FCC’s Mobile Deployment Form 477 data
from 2015 to 2018, which yield a four-year snapshot of mobile network deployment for
the universe of U.S. census blocks. For every firm in every census tract, we calculate
the percentage of census blocks covered within the census tract by a given technology.
The FCC-reported census block coverage has a bipolar distribution, with a small peak

35Due to their size and internal homogeneity, Seim (2006) uses census tracts as location choices for
video retail stores.

36The total area of the U.S. is 9.857 million square kilometers, covering 73,057 census tracts. A census
tract covers 134.9 square kilometers, on average, with roughly 6.5 kilometers as the radius.

37In urban areas, cell towers may be 400 to 800 meters apart to accommodate the dense population.
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between 0% and 10% coverage and a major peak at 100%.38 Some census blocks may
experience low, spillover coverage from a nearby cell site in another census block, and
this is not an actual entry. Therefore, we define a provider’s coverage of a census
block under a given technology as a dummy variable that equals 0 if the FCC-reported
coverage falls below 10%, and 1 otherwise. When we aggregate to census tracts, we
use the same reasoning and define the entry dummy for 4G-LTE as 0 if the percentage
of census blocks covered by 4G-LTE within a census tract falls below 10%, and 1
otherwise.

4.5.2 Sample construction

For the Big Four, we can safely argue that the national 4G-LTE network was mostly laid
out by the end of 2015, and the remaining task was about the leftover, mostly isolated,
open markets. We focus on a potential entrant’s decisions to enter these local, isolated
markets.39 For each provider, a census tract is defined as an open market for 4G-LTE
deployment (an entry decision) if the deployment dummy was 0 in December 2015.
We measure each provider’s network investment via any generation of technology by
the end of 2015. We then use the 2018 data to measure 4G entry into the open markets,
treating the time between 2016 and 2018 as a single period in the cross-sectional data.
We decide to focus on the leftover, often isolated, open markets at the end of 4G-LTE
deployment and to lump a three-year period into a cross section in order to alleviate
the concerns that firms make forward-looking decisions in a dynamic oligopoly game
of interdependent local markets. We think our choice of a static entry game framework
captures the first-order strategic considerations in this setting.

To summarize, from 2016 to 2018 the Big Four were the main competitors in the U.S
cellphone industry, and they were strategically considering whether to enter the few
remaining, scattered, markets left open to 4G-LTE deployment. We define a potential
entrant to a market as a Big Four provider who had no 4G-LTE deployment in the
market by the end of 2015, but had operated in at least one census tract in that state.
A potential entrant is observed as having decided to enter a market if it made 4G-LTE
deployment by the end of 2018. Outside of the Big Four, we do not consider other

38For example, for AT&T and Verizon, the 4G-LTE coverage of a census block was already 100% at
the 10th percentile for most of our data period; for T-Mobile and Sprint, this number was at high 90% at
the 10th percentile.

39A firm usually needs to obtain approval from a state before entry (Fan and Xiao, 2015). If a firm
had not operated in a single census tract in a state, we do not consider this firm as a potential entrant
to any census tracts of the state. Verizon and AT&T had operated in all states (including the District of
Columbia); T-Mobile had entered 50 states and Sprint 49 states.
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providers as potential entrants in our game, but we count their presence in a census
tract by the end of 2015 as part of the incumbent competition. Our sample consists of
2,582 census tracts that have at least two potential entrants by the end of 2015. Each
census tract has an entry game, with two to four potential entrants. When there are
only two potential entrants, it must be that the other two Big Four providers have
already entered and are counted as incumbents. Still, most of the incumbents in a
census tract, if there is any, are small, local or regional providers.

4.5.3 Summary statistics: the Big Four’s cellphone deployment

In Table 1, we present summary statistics of the Big Four’s cellphone technology
deployment in their open 4G-LTE markets by the end of 2015. Of the 2,582 census
tracts in our sample, Verizon had not entered 645 by the end of 2015 (i.e., no 4G-LTE
deployment by the end of 2015); AT&T, 1,132 markets; T-Mobile, 2,185 markets; and
Sprint, 2,182 markets. Table 1 shows how the Big Four differed in their technology
mix of 2G, 3G, 4G-non-LTE, and 4G-LTE. From 2016 to 2018, Verizon focused almost
completely on 4G-LTE; AT&T retired 2G and pushed for 3G, 4G-non-LTE, and 4G-LTE,
with 4G-LTE leading the growth; T-Mobile grew all four technologies, again with 4G-
LTE making the largest strides; Sprint never deployed 4G-non-LTE and made relatively
small steps compared to its rivals. Of the four technologies, 4G-LTE is the one that
experienced the most growth across the board from 2015 to 2018. The 4G-LTE growth
is also reflected by the percentage of 4G-LTE coverage in other tracts of the same county
(referred to as “neighboring tracts” henceforth) and the number of incumbents offering
4G-LTE in the focal markets.

We use two network investment variables to capture the existing facilities owned by
a potential entrant (firm k) in the focal market and nearby areas. The first is the firm’s
3G deployment in the focal market by the end of 2015 (denoted by Xk2,1). The second
is the firm’s 4G-LTE deployment in neighboring tracts by the end of 2018 (denoted by
Xk2,2). As we discussed in Section 5.2, different generations of cellphone technologies
can share basic facilities (e.g., cell towers), and nearby cell sites reduce the cost of
extending the network extra miles (e.g., nearby conduits can be extended to bordering
neighborhoods). Therefore, Xk2,1 and Xk2,2 are shifters for a provider k’s entry decision
into the focal market. Specifically, Xk2,1 captures a firm’s existing network scale in the
focal market, and Xk2,2 captures potential spatial spillover from adjacent tracts.

A potential entrant’s network investment can be measured in different dimensions.
For robustness, we use a potential entrant k’s deployment via any previous generation
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before 4G-LTE in the focal market by the end of 2015 as Xk2,1, and its 4G-LTE deployment
in neighboring tracts by the end of 2015 as Xk2,2. We discuss the robustness of our results
under different measurements of Xk2,1 and Xk2,2 in Appendix D. These robustness checks
only lead to marginally different point estimates, and conform to the main conclusion
in our estimation and counterfactual analyses.

4.5.4 Summary statistics: market attributes

In Table 2, we compare the market attributes of the census tracts in the sample (2,582 in
total) for our entry game and those of the remaining parts of the country (70,745 in total).
The most important determinant of entry is population size. Demand for cellphone
services depends on market demographics such as gender, age, ethnicity profiles,
education, labor force participation, household income and size. Workers’ commuting
patterns also contribute to the intensity of cellphone use. Lastly, population density,
ruralness and the presence of large areas of water can be considered cost shifters for
network deployment.

As shown in Table 2, the 2,582 census tracts, which have at least two Big Four
potential entrants, are notably different from the rest of the country in all dimensions.
They have much smaller populations and very different demographic compositions.
They are more rural, more sparsely-populated, poorer and less educated. They spend
more time working from home and less time commuting to work. In short, these
markets seem to belong to the bottom side of the “digital divide,” which refers to
the significant disparity in Internet access across different demographic groups and
geographic areas in the country.

4.6 Instrumental Variables

To specify our Equations (1) to (4) in this cellphone 4G-LTE entry game application,
we reiterate our notation:

• Yk: potential entrant k’s 4G-LTE entry decision;

• Xk1: tract attributes from 2016 ACS + the number of 4G-LTE incumbents in the
focal census tract by the end of 2015;40

40We treat the number of incumbents as predetermined and uncorrelated with the unobserved uk in
the entry payoff equation. An incumbent’s entry decision was made earlier, before the realization of a
potential entrant’s time-varying private shocks.
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Table 1: Cellphone Service Coverage (2015-2018), by the Big Four
2015 2018

Variable Mean S.D. Mean S.D.

Verizon: potential entrant to 645 tracts
% blocks with 2G 0.007 0.052 0.019 0.106
% blocks with 3G 0.005 0.043 0.016 0.094
% blocks with 4G-non-LTE 0 0 0 0
% blocks with 4G-LTE - - 0.122 0.233
% blocks 4G-LTE, neighbor tracts average 0.447 0.301 0.534 0.365
# incumbents with 4G-LTE 1.297 1.108 1.964 1.460
Entry with 4G-LTE - - 0.267 0.443

AT&T: potential entrant to 1,132 tracts
% blocks with 2G 0.233 0.357 0 0
% blocks with 3G 0.384 0.414 0.468 0.433
% blocks with 4G-non-LTE 0.357 0.409 0.403 0.424
% blocks with 4G-LTE - - 0.362 0.396
% blocks 4G-LTE, neighbor tracts average 0.336 0.372 0.545 0.334
# incumbents with 4G-LTE 1.479 0.877 2.511 1.329
Entry with 4G-LTE - - 0.542 0.498

T-Mobile: potential entrant to 2,185 tracts
% blocks with 2G 0.046 0.163 0.133 0.312
% blocks with 3G 0.011 0.083 0.164 0.315
% blocks with 4G-non-LTE 0.003 0.032 0.243 0.366
% blocks with 4G-LTE - - 0.496 0.423
% blocks 4G-LTE, neighbor tracts average 0.206 0.326 0.534 0.326
# incumbents with 4G-LTE 1.876 0.821 3.011 1.195
Entry with 4G-LTE - - 0.648 0.478

Sprint: potential entrant to 2,182 tracts
% blocks with 2G 0.154 0.314 0.195 0.345
% blocks with 3G 0.147 0.309 0.173 0.326
% blocks with 4G-non-LTE 0 0 0 0
% blocks with 4G-LTE - - 0.208 0.358
% blocks 4G-LTE, neighbor tracts average 0.107 0.231 0.259 0.317
# incumbents with 4G-LTE 2.055 0.787 3.286 1.015
Entry with 4G-LTE - - 0.293 0.455

Notes: This table is based on 6,244 tract-firm observations (2,582 census tracts, two to
four potential entrants in each tract). This table reports the Big Four’s coverage of census
blocks by each generation of technology, summarized over census tracts each firm has yet
to enter with 4G-LTE by the end of 2015.
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Table 2: Census Tract Attributes
Markets to enter Other markets

Variable Definition Mean S.D. Mean S.D.
Pop (in 1,000’s) Population in thousands 2.901 1.758 4.414 2.171
% Female % female in population 0.495 0.045 0.508 0.050
% Senior % 65 and older in population 0.285 0.266 0.153 0.092
% White % White in population 0.862 0.209 0.724 0.253
% Black % Black in population 0.038 0.107 0.142 0.222
% Native % Native in population 0.044 0.161 0.008 0.035
% Asian % Asian in population 0.012 0.037 0.049 0.091
% Hispanic % Hispanic in population 0.072 0.129 0.163 0.215
% College % above 25, with college degree 0.193 0.092 0.294 0.190
% Labor force % above 16, in labor force 0.573 0.109 0.631 0.103
% Work home % above 16, employed, working at

home
0.056 0.047 0.045 0.040

% Long comm. % above 16, employed, commuting for
40+ minutes

0.167 0.106 0.201 0.129

HH income Median household income in Year 2016
($1,000’s)

46.127 14.499 59.641 29.860

HH size Household size 4.651 5.688 2.915 1.835
Pop density Population/land area 0.0002 0.0007 0.002 0.005
% Rural % population in rural area 0.683 0.404 0.190 0.348
Mostly water If water area ≥ 90% 0.113 0.317 0.0007 0.027
Notes: This table is based on 73,057 census tracts, which include 2,582 tracts for the final
sample we use for estimation and 70,475 tracts for the rest of the data.

• Xk2: includes two components – potential entrant k’s 3G deployment in the focal
census tract, Xk2,1, and its 4G-LTE deployment in neighboring tracts, Xk2,2;

• Zk: instrumental variables for Xk2,1 and Xk2,2 (the past attributes of neighboring
tracts in 2000);

• uk: unobserved errors in the ex post payoffs (Equation (1));

• Vk: unobserved errors in Xk2,1,Xk2,2 (Equation (2)).

• ηk: residual private shocks after we control for Vk (Equation (6))

In the specification above, we focus on 4G-LTE competition. That is, we do not
consider a provider that had offered only 3G service as of 2015 as a competitor in the
4G-LTE deployment game. We have two endogenous covariates in a potential entrant’s
expected payoff function: Xk2,1 and Xk2,2. In this subsection, we discuss our choice of
instruments Zk for these endogenous variables.

In a firm’s decision rule (Equation (6)), the unobserved error ηk is a potential
entrant’s private information. The potential entrant observes its own ηk, but not the
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others’, before deploying different generations of technology in the focal and nearby
markets. A good example of this unobserved term is each firm’s cost of deployment,
maintenance and operating in the focal market. In contrast, Vk, can be backed out from
the auxiliary equation that explains the source of endogeneity. A good example of Vk

is a firm’s spectrum holdings and lease/roaming agreement in the area surrounding
the focal market.41

Valid instruments for Xk2 need to be relevant for the “network investment" variables,
to be excluded from the entry payoff function, and to be orthogonal to ηk and Vk. For
each focal census tract, we use the demographics of its "neighbors" (i.e., other tracts
in the same county) in 2000 as instruments for Xk2,1 and Xk2,2. Below we discuss why
these instruments satisfy the three properties required. We go by the order of exclusion,
relevance and exogeneity for the purpose of coherent argument.

First, exclusion. We argue that a potential entrant only evaluates the focal market’s
attributes, its 3G deployment and its own 4G-LTE deployment in neighboring tracts
when evaluating its payoffs. One may worry that a potential entrant makes entry
decisions on a much larger scale than a census tract, so the lagged demographic
variables of neighboring tracts may enter the payoffs on the focal market directly.
However, as explained earlier, our sample consists of tracts that had not been entered
by most major providers as of 2016. These tracts were typically isolated, with the
surrounding tracts already served by 4G-LTE before the start of our sampling period.
This is shown in Table 1’s summary statistics on the percentage of census blocks covered
with 4G-LTE in the neighboring tracts. Therefore, we believe modeling the Big Four
providers’ post-2015 4G-LTE deployment decisions at the level of local markets serves
as a first-order approximation that captures the firms’ main strategic concerns.

Second, relevance. These lagged demographic variables of neighbors affect 4G-
LTE deployment in the neighboring markets directly, and, therefore, are relevant for
Xk2,2. They are relevant for Xk2,1 (the focal market’s 3G deployment), not because
that they directly enter a firm’s decision to deploy 3G in the focal market, but
because they affect a firm’s 3G deployment in the neighboring markets. Note that
3G technology was actively deployed between 2000 and 2010; therefore, the 2000
Census’s market attributes are very relevant to 3G deployment. This is a “spillover
effect" through network investment, because 3G network nearby could lower the cost

41Each provider’s spectrum holdings in 3G technology could even be considered a good instrument
variable for Xk2,1 conceptually. Unfortunately, we could not locate such information in any database, as
activities on secondary markets, such as leases, roaming agreements, and acquisitions, were frequent in
the last two decades.
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of 3G deployment in the focal market. Through the direct effects on the neighboring
markets and the spillover effect to the focal market, these instruments are relevant to
the two endogenous, “network investment" variables in our main equation.

Lastly, orthogonality. It is plausible that these lagged demographics on neighboring
tracts are orthogonal to the unobserved factors determining deployments in focal
and neighboring markets (ηk and Vk), once conditional on market-level observables.
First, the correlation between 2000 Census’s market attributes and 2016’s market-level
unobserved heterogeneity is weakened over time, giving us better justification for the
orthogonality of the instruments. For example, a firm’s spectrum holdings in 2016
(likely sources of Vk) should be driven by the neighboring markets’ attributes around
2016, after multiple generations of cellphone technology evolution and secondary
market trading. Second, we believe that the detailed market-level attributes included
in Xk1 have already captured the spatial correlation across census tracts. Thus we
abstract away from spatial correlation in the unobservables. That is, conditional on
Xk1, the unobserved ηk and Vk, which capture firm- and market-specific unobserved
heterogeneity, are not spatially correlated across census tracts. Lastly, we intentionally
do not include “growth" variables such as population and income growth rates, because
these variables are likely to contribute to current strategic considerations of entering a
cluster of markets and therefore jeopardize the validity of our instrumental variables.

Our choice of neighboring markets’ attributes as instruments originates from
an insight in Fan (2013), which used the demographics in the market of a firm’s
competitors (excluding this firm’s own market) as instruments. The competitors’ non-
overlapping markets are typically adjacent to a newspaper’s market. In particular,
Fan (2013) showed that the demographics of neighboring counties are not highly
correlated (which implies her exogenous covariates and excluded instruments are not
highly correlated). Our exogenous covariates and excluded instruments follow similar
structures in our first-stage regressions. Many coefficients on neighboring markets’
lagged demographics in Table 9 are statistically significant, suggesting these excluded
instruments matter for our endogenous network deployment variables even with all
the exogenous covariates of focal markets’ attributes. To check instrument strength
and relevance, we test the joint significance of these instruments in Equation (2). For
the equation that explains Xk2,1, the F-statistic is 8.514 with a p-value less than 0.001;
for Xk2,2, the F-statistic is 46.19 with p-value less than 0.001.
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4.7 Estimation Results

Among the Big Four, AT&T and Verizon lead in terms of spectrum holdings,
network built and customer base. Our baseline specification categorizes AT&T and
Verizon as “strong” potential entrants and T-Mobile and Sprint as “weak” ones.
Analogous to our Monte Carlo exercise, we estimate heterogeneous competitive effects
based on whether the potential entrant is strong or weak in terms of deployment,
relative to competitors. We hypothesize that “weak" potential entrants will suffer
larger competition effects because they are less able to secure market shares facing
competition. We present results treating all four firms as equal competitors in
Appendix D. We adopt a specification in which the coefficients are not firm-specific
(except for the aforementioned heterogeneous competition effects) in ex post payoffs.
Thus, for simplicity, we suppress the index k in Xk2,1,Xk2,2,Vk1,Vk2 when reporting our
estimation and simulation results.

Table 3 presents estimation results from two models, with and without accounting
for endogeneity in X2 respectively. In the former model, we include all exogenous and
instrumental variables and their squared terms (excluding dummy variables) in the first
stage estimation (the first-stage results are reported in Appendix E). In the latter model,
all covariates in X1 and X2 are considered exogenous in MLE estimation. Using our
estimator in Section 3 to allow for endogenous X2, we get estimates that mostly conform
to our expectations. The “expected competition” effects (αk) are significantly negative,
with a larger effect on weak potential entrants as we hypothesized. The incumbent
effect is also significantly negative. The incumbent competition effect is in fact much
smaller that the expect “big four" competition effects (αk). This is because most of these
incumbents are small, local or regional providers that were not equal competitors with
any of the Big Four firms. Population size contributes to 4G-LTE entry positively, but
the percentages of seniors, Natives and Hispanics, as well as water coverage, act in the
opposite direction. The percentage of labor force participation contributes to 4G-LTE
entry negatively, which can be rationalized as labor force participation has no clean-cut
relationship with the willingness to pay for mobile phone services. For example, if
a census tract has a lot of low-end jobs that do not pay well, then higher labor force
participation will not necessarily translate into greater willingness to subscribe to 4G-
LTE. The percentage of rural population, likewise, has an ambiguous relationship with
such willingness to pay. For example, residents who live in a rural area may be willing
to spend on better mobile coverage to stay connected.

33



Allowing for potential endogenous X2’s turns out to have a big impact on the
estimates of network investment effects. Both models produce significantly positive
estimates for the coefficients of X2’s, but ignoring the endogeneity in X2 underestimates
the effect of X2,1 while over-estimating that of X2,2. The reason for such discrepancies
can be attributed to the roles of structural errors (Vs) in the expected entry payoff. These
Vs are firm- or market-level heterogeneity. Different Vs may contribute to 3G/4G-LTE
deployment in the focal market and 4G-LTE deployment in the neighboring markets
in different directions.

As noted earlier, a good example of V’s that can lead to these patterns is
each firm’s spectrum holdings for different generations of cellphone technology. A
firm knows its own spectrum holdings and usually has a rough idea of its rivals’
spectrum holdings, because the FCC’s spectrum auctions are public information and
trading/leasing/roaming agreements are often industry knowledge. The spectrum of
a certain frequency often best serves a particular generation of cellphone technology
and has different suitability for urban, suburban and rural deployment. For example,
700 MHz is considered the right band for 4G-LTE, while 2.5GHz is right for 5G. A firm
may have a rich stock of 3G spectrum but a poor stock of 4G-LTE spectrum, simply
due to budget constraints.42 The negative correlation between a firm’s 3G and 4G-LTE
spectrum holdings in a focal market (which are captured in V1 and u, respectively)
is consistent with a negative coefficient for V1 in our estimates, which account for
endogenous X2,1. In addition, this negative correlation also explains the negative bias
in the estimated coefficient for X21 when its endogeneity is ignored (i.e., 2.024<3.757).

At the same time, note that if a firm owns a 4G-LTE spectrum license for the focal
census tract, this license covers at least the entire county due to its indivisible nature.43

Hence, there is positive correlation between the 4G-LTE spectrum holdings in the focal
and neighboring markets (captured by u and V2, respectively). This is consistent with
a positive coefficient for V2 in our estimates accounting for endogenous X2, and it leads
to a positive bias in the estimated coefficient for X2,2 when endogeneity is ignored (i.e.,
3.042>1.618).

Table 3 also shows that ignoring endogeneity in 3G and neighboring 4G-LTE

42For example, T-Mobile did not (and still does not) have enough low-band spectrum (600 MHz),
which has wider reach and is better suited for rural deployment; instead, it relies on 1,700MHz and
1900MHz for 4G-LTE deployment, which is better suited for urban and suburban areas.

43The FCC’s smallest coverage for a spectrum license is the Cellular Market Area, which typically
covers three to four counties. Even if firms divide spectrum licenses for resale and lease in secondary
markets, they do not break down counties (Kavalar, 2014).
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deployment only leads to slight exaggeration of competition effects (αk). The difference
between these estimates is small relative to the size of marginal effects by the network
deployments (γk), and does not appear statistically significant given the standard
errors. This may be related to our hypothesis that the source for endogeneity, i.e.,
the correlation between u j and V j, is largely due to the latent, firm-specific spectrum
holdings. Thus, not accounting for such a source of endogeneity in estimation would
leave the structural errors more directly and strongly correlated with the individual
firm’s deployment (whose coefficient is γk) than with the other common features that
affect the equilibrium beliefs (whose coefficient is αk).

4.8 Counterfactual Results: Evaluating the Merger and the Merger

Remedy

In this section, we investigate the impact of a hypothetical merger between T-Mobile
and Sprint in 2016. In the first scenario, we use the structural estimates from Table 3 to
simulate market outcomes under a baseline scenario with no mergers. In the second
scenario for simulation, T-Mobile and Sprint are merged into a "strong" competitor
with an integrated T-Mobile and Sprint network (henceforth referred to as a “New
T-Mobile”).44 In the third scenario, we introduce DISH as a new potential entrant. It is
modeled as a “weak competitor” that takes over the decommissioned network initially
owned by Sprint. That is, in this scenario, the T-Mobile and Sprint merger is mandated
to divest assets to the new competitor DISH, enabling DISH’s entry as a facilities-based
provider. This scenario corresponds to the DOJ’s proposed remedy based on anti-trust
concerns. We keep all 2,582 open markets in the baseline simulation, which has a
combined total population of 17,209,450.45

We use the estimated coefficients in Table 3 to simulate the local market entry
decisions of Verizon, AT&T and New T-Mobile (and DISH in the third scenario). For

44After the merger, T-Mobile will bridge the two network cores by routing Sprint traffic to the T-
Mobile anchor network. An estimated 11,000 Sprint cell sites will be retained to improve capacity
and/or coverage in the new network. We implement the after-merger network integration in data by
taking the union or the maximum of T-Mobile’s and Sprint’s coverage at the census block level. These
two methods yield almost identical results because, in census tracts where both firms serve, they serve
mostly at 100% coverage. We report the maximum result in the paper.

45If either T-Mobile or Sprint was a 4G-LTE incumbent in a census tract in 2015 and the other was a
potential entrant, we assume that after the merger, New T-Mobile will re-evaluate the profitability of the
market and decide about entry again. In this case, and in the case that Sprint was a 4G-LTE incumbent
in a census tract in 2015, the number of incumbents in 2016 will be reduced by one after the merger.
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Table 3: Estimation Results of the 4G-LTE Entry Game: Structural Coefficients

Treating X2 as Endogenous Treating X2 as Exogenous
(1) (2)

Variable Estimate Std. Error Estimate Std. Error
Pop (in 1,000’s) 0.078*** 0.020 0.081*** 0.019
% Female 0.437 0.761 0.417 0.758
% Senior -1.035** 0.414 -1.110*** 0.425
% White -0.233 0.513 -0.170 0.515
% Black -0.351 0.526 -0.367 0.535
% Native -1.396*** 0.536 -1.611*** 0.518
% Asian 0.870 1.310 1.290 1.316
% Hispanic -0.469 0.339 -0.185 0.308
% College -0.150 0.403 -0.063 0.417
% Labor force -0.943*** 0.322 -0.627** 0.314
% Work home 0.289 0.522 0.768 0.588
% Long comm. 0.069 0.307 -0.508* 0.297
HH income -0.002 0.003 -0.006** 0.003
HH size -0.042 0.026 -0.059** 0.026
Pop density -0.131 0.089 -0.229*** 0.084
% Rural 0.223* 0.126 0.188** 0.092
Mostly water -1.850*** 0.550 -2.418*** 0.545
# Incumbents -0.158*** 0.043 -0.225*** 0.042
Intercept 0.911 0.784 0.871 0.757
Network Investment Effects

X2,1 3.757*** 0.790 2.024*** 0.178
X2,2 1.618*** 0.323 3.042*** 0.096
V1 -1.738** 0.784 – –
V2 1.536*** 0.335 – –

Expected Competition Effects
Strong potential entrant -1.070*** 0.090 -1.084*** 0.085
Weak potential entrant -1.105*** 0.061 -1.133*** 0.064
Notes: The results are based on 6,244 potential entrants for 2,582 census tracts
(each with at least two potential big-4 entrants). Standard errors are obtained by
resampling the markets with replacement for 1,000 times. Asterisks indicate the
statistical significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) levels. The estimated
competitive effects satisfy the moderate interaction condition in Assumption 2 on
95.7% of markets in the sample.

comparison, in each scenario, we simulate two sets of outcomes, one with and one
without accounting for endogenous X2. Panel A in Table 4 presents the simulated
market entries across different scenarios; Panel B in Table 4 reports the population still
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underserved (that is, the population with the number of providers less than or equal
to one) by the end of 2018 across these scenarios.

Columns (1) to (3) of Table 4 are simulation results under the three scenarios, using
structural estimates that account for endogeneity (column (1) of Table 3). Comparing
column (1) to column (2), we can see that the T-Mobile and Sprint merger reduces the
number of total entry occurrences from 2,898 to 2,264, which is a 21.88% reduction.
This leads to a large increase (23.15%) in the underserved population. There are
two explanations for such a reduction: First, there are fewer potential entrants in the
markets after the merger. Second, the New T-Mobile resulting from the merger is a
strong competitor with an integrated network from Sprint and T-Mobile and, therefore,
the entry probability of the merged firm is higher than that of T-Mobile or Sprint alone.
That also impacts how the merger deters entry by the other competitors. These two
effects can also explain the simulated increase in the number of markets with no Big-4
entrant under the T-Mobile/Sprint merger in column (2). On the one hand, the post-
merger New T-Mobile may well benefit from an economy of scale due to the combined
network investment, and consequently has stronger profit incentives for entry; on the
other hand, our simulation indicates that such an increase in the entry likelihood of the
single, merged entity is not substantive enough to off-set the negative impact on entry
occurrence due to fewer potential entrants and the equilibrium responses by the other
Big-4 competitors (AT&T and Verizon). As for each firm’s entry occurrences after the
merger, New T-Mobile would gain sizable ground after the merger (compared to the
pre-merger T-Mobile), while AT&T and Verizon would stay roughly the same. Overall,
the reduction of total instances of market entry after the merger is due mainly to the
fact there would be fewer potential entrants.

Now, consider the scenario in which DISH is introduced after the merger as a fourth
competitor, enabled by the mandated divestiture from the New T-Mobile. We assume
the most optimistic scenario, which is that DISH is able to achieve Sprint’s deployment
in 2015 after entry. Column (3) of Table 4 reports that the number of entry occurrences
is 2,940, substantially higher than in the scenario without the divestiture required by
the DOJ. This practically restores the level of market entries in the baseline scenario
without the merger. On most dimensions of entry outcomes and population covered,
the DISH remedy seems to be effective. Despite the entry occurrences under the DISH
remedy being even higher than the baseline (2,940 vs. 2,898), the total population
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Table 4: Counterfactual Results under Alternative Models
Treating X2 as Endogenous Treating X2 as Exogenous

(1) (2) (3) (4) (5) (6)
Panel A: Entry outcomes
# markets with Baseline 4 to 3 DISH Baseline 4 to 3 DISH
n entrants = 0 522 633 516 524 578 521
n entrants = 1 1,277 1,641 1,244 1,277 1,677 1,234
n entrants = 2 730 300 771 730 319 770
n entrants = 3 50 8 51 49 8 53
n entrants = 4 2 – – 3 0 5
Total # entry occurrences 2,898 2,264 2,940 2,893 2,338 2,951

by AT&T 716 727 714 716 740 717
by Verizon 157 171 150 155 186 152
by T-Mobile/New T-Mobile 1,201 1,366 1,262 1,194 1,412 1,258
by Sprint/DISH Network 824 – 814 827 – 824

Panel B: Population (in 1,000’s) under-served (# incumbents in 2018 ≤ 1)
Underserved population Baseline 4 to 3 DISH Baseline 4 to 3 DISH
Total population 216 266 223 226 263 224
Minority population 122 135 124 124 132 123
Rural population 162 196 165 167 196 166
Notes: For each market, we make 1,000 random draws of the error vector, and use
the structural estimates from Table 3 to generate 1,000 counterfactual predictions.
The table reports average predictions (rounded to the nearest integer). The above
results are based on 2,582 census tracts, each with at least one potential entrant
from the Big Four. In Panel A, the number of entrants does not include the number
of incumbents prior to 2016; in Panel B, the number of incumbents in 2018 includes
both the incumbents prior to 2016 and the entrants between 2016 and 2018.

under-served would increase by 3.24% from column (1) to column (3). We checked the
entry patterns of each firm, and discovered that firms would choose to enter different
census tracts after the (remedied) merger, leading to a change in the composition of
markets served. In this simulation, we have DISH assuming exactly the same network
deployment as Sprint in 2015, and AT&T and Verizon staying the same as before.
T-Mobile is the only firm with big changes: New T-Mobile not only has a stronger
network, but also becomes a “strong” potential entrant after the merger. The change in
the composition of the markets entered is a strategic, equilibrium response due to the
different configurations of network investment and competitors of different statuses
in the markets.

Columns (4) to (6) of Table 4 report simulation results using estimates that do not
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Table 5: Merger Evaluation under Alternative Models

4 to 3 merger effects DISH remedy effects
= (4 to 3 - baseline)/baseline = (DISH - baseline)/baseline

(1) (2) (3) (4)
Endogenous X2 Exogenous X2 Endogenous X2 Exogenous X2

Total # entry occurrences -21.88% -19.18% 1.45% 2.00%
# markets with 0 entrant 21.26% 10.31% -1.15% -0.57%
# markets with 1 entrant 28.50% 31.32% -2.58% -3.37%

Population (in 1,000’s) under-served (# incumbents in 2018 ≤ 1)
Total population 23.15% 16.37% 3.24% -0.88%
Minority population 10.66% 6.45% 1.64% -0.81%
Rural population 20.99% 17.37% 1.85% -0.60%

Notes: The above results are calculated using Table 4 results.

account for endogeneity in 3G and neighboring 4G-LTE deployment (the first column
in panel (2) of Table 3). A comparison between column (1) and column (4) suggests
the impact of ignoring endogeneity in X2 on simulated entries under the baseline
scenario is negligible. The predicted changes in market entry under the second (4-to-3
merger) and third (merger + DOJ-mandated divestiture) scenarios in columns (5) and
(6), however, are very different from those predicted in columns (2) and (3). We create
Table 5 to compare the magnitudes of merger effects and remedy effects under these
two models.

As Table 5 shows, if we ignore endogeneity in X2, we will significantly
underestimate the effect of the T-Mobile and Sprint merger on the reduction of entry
and on the population affected by reduced entry. Specifically, the number of unserved
markets will increase by 21.26% with the 4-to-3 merger under the endogenous X2 model
but only 10.31% if the endogeneity in X2 is ignored in estimation and simulation.
Underestimation of a similar magnitude also happens for population affected by
reduced entry. For example, the merger will lead to a 23.15% increase in the population
underserved and a 20.99% increase in the rural population underserved under the
endogenous X2 model but only 16.37% and 17.37% in corresponding metrics under
the exogenous X2 model. The DISH remedy (merger + DOJ-mandated divestiture
to DISH) effects predicted by the exogenous X2 model are more optimistic than those
predicted under the model with endogenous X2. The model with exogenous X2 slightly
overestimates the percentage increase in entry occurrence under the DISH remedy. It
also suggests the DISH remedy would even lead to small reductions in the under-
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served population, while the model that accounts for endogenous X2 indicates the
remedy will actually lead to non-trivial increases in the under-served population. The
key message is that researchers would paint a much rosier picture of the consequences
due to the merger and the impact of the DISH remedy if they were to use a model
that does not account for X2’s endogeneity. Relying on such a biased prediction,
policymakers would lean more toward approving the proposed merger.

5 Conclusion

The literature on discrete choice games is silent on how to deal with endogenous
covariates, which is often the focus of empirical exercises. An example of potentially
endogenous covariates in firm profits from market entry is the continuous measure
of airport presence in Berry (1992). Another example is a grocery store’s distance to
a supercenter in Grieco (2014), as supercenter locations are endogenous outcomes
of a related game at a grander level and possibly correlate with the unobserved
heterogeneity of rural markets to be entered by smaller stores. In these studies, the
potentially endogenous variables are treated as exogenous. The empirical literature
so far has not provided researchers with means to accommodate both the effect of
competition (or social interaction) and that of the endogenous covariates in a discrete
game setting.

We fill in this gap, proposing a new method for estimating discrete games with
incomplete information in the presence of endogenous covariates. The approach is
flexible enough to accommodate endogeneity due to player- or game-level unobserved
heterogeneity. We apply the method to estimate an entry game of 4G LTE deployments
between major wireless service providers in the U.S. In this setting, existing 3G
network investment and neighboring 4G-LTE investment are endogenous covariates.
We find that a hypothetical merger between T-Mobile and Sprint would reduce 4G-
LTE deployment significantly in our sample and that the divestiture remedy would
not completely reverse the negative outcomes of the merger. More importantly, we
show that incorporating the endogeneity of network investment affects our estimates
of economic primitives, the counterfactual simulations under the hypothetical merger,
and the policy implications. Both the merger and the remedy would lead to changes
in the composition of markets entered and, in turn, different populations covered by
cellphone services, and the effects captured by a model with endogenous network
investment differs from those ignoring such endogeneity. Based on our results, we
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recommend that competition and regulatory authorities fully consider the multi-
dimensional trade-offs between market power effects and efficiency gains from drastic
changes in market structure due to mergers or entry and exit events.46

Individuals and firms weigh their decisions based on all available information
in strategy settings, but not all of it is captured by observed covariates in empirical
models. Some observed covariates are correlated with the player- and game-level
unobserved heterogeneity. There are many analogies in applied microeconomics, in
which it is essential that researchers incorporate endogenous variables to study a key
decision. In labor economics, a worker’s career choice depends on her accumulation
of human capital. In industrial organization, a pharmaceutical company’s patenting
decision depends on its stock and flow of innovative activities; a cable TV network’s
decision to discontinue a TV series depends on the series’ rating and viewership. We
hope our method will provide a useful tool to identify multiple parameters of interest
and, in turn, improve researchers’ ability to diagnose, predict and recommend policy
remedies.
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Appendix A Proofs

Proof of Theorem 1. (Consistency of θ̂2SNPL) First, we show that Ln(·, ·; Π̂)
p
−→ L0(·, ·)

uniformly over Θ × P. By the mean value theorem, for any θ ∈ Θ, P ∈ P,

Ln(θ,P; Π̂) − Ln(θ,P; Π0) = ∇ΠLn(θ,P; Π+)(Π̂ −Π0), (12)

where Π+ denotes an intermediate value between Π̂ and Π0. By (12) and the triangular
inequality,

supθ,P
∣∣∣∣Ln(θ,P; Π̂) − L0(θ,P)

∣∣∣∣
≤ supθ,P |∇ΠLn(θ,P; Π+)|

∣∣∣∣Π̂ −Π0

∣∣∣∣ + supθ,P |Ln(θ,P; Π0) − L0(θ,P)| .

Under our maintained conditions, supθ,P |∇ΠLn(θ,P; Π+)| = Op(1). Because Π̂
p
→ Π0,

the first term on the right-hand side of the inequality is op(1). By Assumption 4-(ii)
and the fact that li(θ,P; Π0) is continuous at each θ,P with probability one, the second
term on the right-hand side of the inequality is op(1). This establishes the uniform
convergence of Ln to L0(·) over Θ × P.

47



Note that, by Assumption 3-(ii) and the Kullback-Leibler information inequality,
(θ0,P0) uniquely maximizes L0(θ,P) in the set Λ0. Define

T(θ,P; Π0) ≡ max
c∈Θ

{
L0(c,P; Π0)

}
− L0(θ,P; Π0),

where we write out dependence of L0 on Π0 explicitly. Because L0(θ,P; Π0) is continuous
and Θ × P is compact, Berge’s maximum theorem establishes that T(θ,P; Π0) is a
continuous function. By construction, T(θ,P; Π0) ≥ 0 for any (θ,P). Define

E ≡

{
(θ,P) ∈ Θ × P : P = Γ(θ,P; Π0)

}
.

Since Θ × P is compact and Γ is continuous, E is a compact set. By definition, Λ0

is a subset of E. For each element in Λ0, consider an arbitrarily small open ball that
contains it. Let Bε(θ0,P0) denote the union of such open balls containing elements of
Λ0. Let Bc

ε denote the complement of Bε. We then see that Bc
ε(θ0,P0)∩E is also compact.

Define the constant

τ ≡ min
(θ,P)∈Bc

ε(θ0,P0)∩E
T(θ,P; Π0) > 0. (13)

Define the event

An ≡
{∣∣∣Ln(θ,P; Π̂) − L0(θ,P; Π0)

∣∣∣ < τ/2 for all (θ,P) ∈ Θ × P
}
.

Let
(
θ∗n,P∗n

)
be an element of Λn. Then, An implies that

L0

(
θ∗n,P

∗

n; Π0

)
> Ln

(
θ∗n,P

∗

n; Π̂
)
−
τ
2

; and

Ln

(
θ,P∗n; Π̂

)
> L0

(
θ,P∗n; Π0

)
−
τ
2

for any θ ∈ Θ.

Besides, Ln

(
θ∗n,P∗n; Π̂

)
≥ Ln

(
θ,P∗n; Π̂

)
by definition of Λn. Thus,

L0

(
θ∗n,P

∗

n; Π0

)
> Ln

(
θ∗n,P

∗

n; Π̂
)
−
τ
2
≥ Ln

(
θ,P∗n; Π̂

)
−
τ
2
> L0

(
θ,P∗n; Π0

)
− τ

for any θ ∈ Θ. Therefore,

An ⇒
{
L0

(
θ∗n,P

∗

n; Π0

)
> L0

(
θ,P∗n; Π0

)
− τ,∀θ ∈ Θ

}
,

⇒

{
L0

(
θ∗n,P

∗

n; Π0

)
> max

θ∈Θ
L0

(
θ,P∗n; Π0

)
− τ

}
,

⇒

{
τ > T

(
θ∗n,P

∗

n; Π0

)}
,

⇒

{
min

(θ,P)∈Bc
ε(θ0;P0)∩E

T(θ,P; Π0) > T
(
θ∗n,P

∗

n; Π0

)}
by (13),

⇒

{
(θ∗n,P

∗

n) ∈ Bε(θ0,P0)
}
.
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The last induction uses the fact that (θ∗n,P∗n) ∈ E. Therefore, Pr(An) ≤ Pr
(
(θ∗n,P∗n) ∈

Bε(θ0; P0)
)
. By the uniform convergence of Ln(·; Π̂) to L0(·), Pr(An)→ 1 as n→∞. Thus,

Pr
(
(θ∗n,P

∗

n) ∈ Bε(θ0; P0)
)
→ 1. (14)

For the case in which Λ0 is a singleton, this suffices for consistency of θ̂2SNPL.
In the general case in which Λ0 has multiple elements, the proof follows from

the same arguments in Aguirregabiria and Mira (2007), who proceed by showing the
following results sequentially: (1) φn converges to φ0 in probability uniformly in a
neighborhood around P0; (2) with probability approaching 1, there exists an element
(θ∗n,P∗n) of Λn in any open ball around (θ0,P0); and (3) with probability approaching 1,
the 2SNPL estimator is the element of Λn that belongs to an open ball around (θ0,P0).

(Asymptotic Normality of θ̂2SNPL) We now derive the limit distribution of θ̂2SNPL. To
simplify notation, we drop the subscript 2SNPL from the notation of this estimator in the
proof below. By definition,

1
n

∑n

i=1
∇θli(θ̂, P̂; Π̂) = 0 and P̂ − Γ(θ̂, P̂; Π̂) = 0.

A stochastic mean value theorem between (θ0,P0; Π0) and (θ̂, P̂; Π̂), together with
consistency of (θ̂, P̂) and Π̂, implies that

1
√

n

n∑
i=1

sθ,i −Ωθθ

√
n
(
θ̂ − θ0

)
−ΩθP

√
n
(
P̂ − P0

)
−ΩθΠ

√
n
(
Π̂ −Π0

)
= op(1),(

I − Γ0
P

) √
n(P̂ − P0) − Γ0

θ

√
n(θ̂ − θ0) − Γ0

Π

√
n(Π̂ −Π0) = op(1).

Solving for
√

n(P̂ − P0) from the second set of equations and substituting into the
first set, we get

[Ωθθ + ΩθP(I − Γ0
P)−1Γ0

θ]︸                        ︷︷                        ︸
≡M

√
n(θ̂ − θ0)

=
1
√

n

n∑
i=1

sθ,i − [ΩθP(I − Γ0
P)−1Γ0

Π + ΩθΠ]
√

n(Π̂ −Π0) + op(1)

=
1
√

n

n∑
i=1

{
sθ,i − [ΩθP(I − Γ0

P)−1Γ0
Π + ΩθΠ]r0,i

}
︸                                       ︷︷                                       ︸

≡s̃i

+ op(1),

where the second equality uses the asymptotic linear representation of
√

n(Π̂−Π0) and
its influence function r0,i ≡ ri(Π0). The asymptotic distribution of θ̂ then follows from
the continuous mapping theorem.
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Appendix B Monte Carlo Evidence

In this appendix, we illustrate the finite-sample performance of our 2SNPL estimator
by several Monte Carlo experiments. We consider four players in the game, each
associated with X1 and X2, which are drawn from the bivariate normal distribution
with mean zero, unit variance, and covariances 0.5. A pair of independent standard
normal variates (v, η) were drawn. We consider two cases: homogeneous competitive
effects and heterogeneous competitive effects.

B.1 Homogeneous competitive effects

Consider a game with four players indexed by k = 1, 2, 3, 4. We generate the error term
as uk = λvk + ηk and the endogenous variable as

Xk2 = π0 + π1Xk1 + π2Zk + vk.

Let (Xk1,Zk)’s be drawn from bivariate normal distribution with mean (0, 0) and

variance-covariance matrix

 1 0.5
0.5 1

. We set the true parameter (π0, π1, π2, λ) =

(1, 1, 1, 1). The conditional choice probabilities P0 = (P∗1,P
∗

2,P
∗

3,P
∗

4) in the BNE are
solved by

P∗k = Φ
(
β0 + β1Xk1 + γXk2 + α

∑
j,k

P∗j + λvk

)
, k = 1, 2, 3, 4.

The decisions are then generated by

Yk = 1
{
β0 + β1Xk1 + γXk2 + α

∑
j,k

P∗j + uk > 0
}
, k = 1, 2, 3, 4.

We set the true parameter (β0, β1, γ, α) = (1, 1, 1,−0.5). Each simulation was based
on a random sample of (200,400,800) observations and was replicated 1000 times.
We report the average biases and the mean squared errors for true parameter
(β0, β1, γ, λ, α) = (1, 1, 1, 1,−0.5) in Table 1.
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Table 6: Homogeneous Competitive Effects
Average Bias

n β γ λ α
200 0.042 0.027 0.016 -0.021 0.019
400 0.010 0.009 0.015 -0.006 0.012
800 0.008 0.010 0.003 -0.002 0.007

Mean Squared Error
n β γ λ α

200 0.102 0.040 0.017 0.021 0.024
400 0.048 0.018 0.009 0.011 0.011
800 0.023 0.010 0.004 0.005 0.006

Table 7: Heterogeneous Competitive Effects
Average Bias

n β γ λ α
200 0.021 0.024 0.028 0.028 -0.010 -0.029
400 0.013 0.016 0.012 0.015 -0.005 -0.015
800 0.000 0.008 0.010 0.006 -0.001 -0.008

Mean Squared Error
n β γ λ α

200 0.090 0.039 0.017 0.023 0.025 0.024
400 0.041 0.018 0.009 0.011 0.011 0.010
800 0.022 0.009 0.004 0.006 0.006 0.005

B.2 Heterogeneous competitive effects

We now consider Monte Carlo designs in which the competition effects differ across
"strong" and "weak" players. All other settings are the same as in the homogeneous
case, except that the conditional choice probabilities P0 = (P∗1,P

∗

2,P
∗

3,P
∗

4) in BNE are
solved by

P∗k = Φ
(
β0 + β1Xk1 + γXk2 + αk

∑
j,k

P∗j + λvk

)
, k = 1, 2, 3, 4,

where α1, α2 = αS and α3, α4 = αW.47

47In this example, we take the first two players as strong and the rest two players as weak. The
labels for heterogeneous competition effects indicates what type of these players are, not the type of
competitors they will face after entry.
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The decisions are then generated by

Yk = 1
{
β0 + β1Xk1 + γXk2 + αk

∑
j,k

P∗j + uk > 0
}
, k = 1, 2, 3, 4,

where we have the true parameter (αS, αW) = (−0.5,−1). Each simulation is based on a
random sample of (200,400,800) observations and is replicated 1000 times. We report
the average biases and the mean squared errors for (β0, β1, γ, λ, αS, αW) with true values
(1, 1, 1, 1,−0.5,−1) in Table 2.

Both Tables 1 and 2 show that our estimator converges to the true parameter values
at the parametric root-n rate. In both cases, the variances of the estimators seem to be
the dominating component in the mean-squared error (relative to bias).

Appendix C Cellular Network Explained

A cellphone is a portable telephone that can make and receive calls over a radio
frequency (“spectrum”) while the user is moving within a service area. When a user
makes a phone call or sends a message, her cellphone converts her voice or message into
electrical signals, which are transmitted from her location to the nearest cell tower via
radio waves. The network of cell towers then relays the radio waves to the receiver’s
cellphone, which converts it to electrical signals and then back to sound, text, or image
again. In this process, data travel in a “cellular network,” which is composed of
cellphones, base transceiver stations (“cell sites”), mobile telephone switching offices,
and the public switched telephone network. A cellphone is a type of Mobile Subscriber
Unit, which consists of a control unit and a transceiver that transmits and receives radio
transmissions to and from a cell site. The term cell site refers to the physical location
of radio equipment that provides coverage within a cell. The hardware located at
a cell site includes power sources, interface equipment, radio frequency transmitters
and receivers, and antenna systems. A mobile telephone switching office is the central
office for mobile switching. It houses the mobile switching center, field monitoring, and
relay stations for switching calls from cell sites to wire-line central offices. The public
switched telephone network is made up of local networks, exchange area networks, and
the long-haul network that interconnect telephones and other communication devices
on a worldwide basis. Boccuzzi(2019) describes the basics of cellular communications.

A new generation of network technology has arrived in almost every decade since
the inception of such technology. The first two generations (0G and 1G) were before the
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widespread use of cellphones.48 In the 1990s, 2G started the use of digital transmission
instead of analog transmission, marking the start of widespread use of cellphones
in our lives. In the 2000s, 3G was the predominant technology, and in the 2010s, it
was 4G-LTE. Now we are facing the transformation from 4G-LTE to 5G, the newest
generation of network technology.

Appendix D Robustness of Table 3

We check the robustness of our Table 3’s results by: 1) restricting our analysis to
homogeneous competition effects; 2) using any generation of technology (2G, 3G,
and 4G non-LTE combined) instead of just 3G to measure a firm’s previous network
investment in the focal market; 3) using a firm’s 4G deployment in neighboring markets
in 2015, instead of that in 2018, to measure the firm’s network investment in neighboring
markets.

Table 8 reports the results from these alternative specifications. In specification (1),
the Big Four are treated as equal competitors. Results in this specification are very close
to specification (1) in Table 3, suggesting only small differences in how AT&T/Verizon
and T-Mobile/Sprint reacted to expected competition. In specification (2), for X2,1, we
expand from 3G to include any previous generation of technology deployment in the
focal market. Compared with specification (1) in Table 3, the main change is that the
estimate of the coefficient for V1 and for X2,1 become smaller in their absolute values.
In specification (3), we do not consider the concurrent deployment of 4G-LTE in the
neighboring census tracts; instead, we restrict 4G-LTE deployment in the neighboring
census tracts to the status quo before the start of the entry game. Compared with
specification (1) in Table 3, the main change is that the estimate of the coefficient for
V2 and for X2,2 become smaller in their absolute values. The competition effects in
specification (3) also become much smaller. In specifications (2) and (3) of Table 8, the
qualitative results stay the same as Table 3.

In summary, these alternative specifications often produce marginally different
magnitudes in estimates, but they all point to the importance of the network investment
effect, as well as a consistently negative expected competition effect.

480G refers to pre-cellphone mobile technology, such as radio telephones that were placed in cars
before the advent of cellphones. 1G refers to Analog Cellular Networks, which employ multiple cell
sites to transfer calls from one site to the next as the user travels between cell sites during a conversation.
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Appendix E First-stage Results

Table 9 reports the first-stage regression results for the endogenous network investment
model. In the reported results in this paper, we adopt a specification with covariates
of X1, Z, and their squared terms in the first stage regressions of X2,1 and X2,2. We
reported the first-stage results in Spec. (2), corresponding to columns (2) and (4) in
Table 9. In Spec. (2), the adjusted R2’s for X2,1 and X2,2 regressions are 0.077 and 0.333,
respectively. In Spec. (1), we report the first-stage results in which we include only
(X1,Z) — but not the squared terms — as the regressors.
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Table 8: Robustness of Table 3
Homogeneous Use any G Use 2015’s 4G
Competition for X2,1 for X2,2

(1) (2) (3)
Variable Est. S.E. Est. S.E. Est. S.E.
Pop (in 000’s) 0.078*** 0.020 0.071*** 0.015 0.051*** 0.015
% Female 0.436 0.758 0.711 0.520 0.399 0.520
% Senior -1.046** 0.413 -0.954*** 0.338 -0.772** 0.338
% White -0.224 0.513 -0.235 0.395 -0.471 0.395
% Black -0.351 0.527 -0.359 0.413 -0.728* 0.413
% Native -1.391*** 0.537 -1.626*** 0.398 -1.045*** 0.398
% Asian 0.877 1.314 1.181 1.036 0.310 1.036
% Hispanic -0.468 0.340 0.042 0.232 -0.467** 0.232
% College -0.155 0.402 0.103 0.320 0.180 0.320
% Labor force -0.943*** 0.321 -0.846*** 0.243 -1.108*** 0.243
% Work home 0.277 0.521 0.733* 0.430 0.051 0.430
% Long commute 0.070 0.307 -0.144 0.217 0.439** 0.217
HH income -0.002 0.003 -0.006** 0.002 0.001 0.002
HH size -0.042 0.026 -0.043** 0.019 -0.013 0.019
Pop density -0.132 0.089 -0.192*** 0.070 -0.051 0.070
% Rural 0.221* 0.126 0.021 0.074 00.116 0.074
Mostly Water -1.858*** 0.548 -2.438*** 0.410 -1.383*** 0.410
# Incumbents -0.162*** 0.043 -0.188*** 0.034 -0.007 0.034
Intercept 0.926 0.784 1.256** 0.540 0.670 0.540
Network Investment Effects

X2,1 3.743*** 0.788 1.261*** 0.235 3.705*** 0.235
X2,2 1.610*** 0.322 1.958*** 0.119 0.254** 0.119
V1 -1.731** 0.783 0.704*** 0.183 1.103*** 0.183
V2 1.531*** 0.335 1.114*** 0.204 0.472** 0.204

Competition Effects
Any P.E. -1.099*** 0.062 - - - -
Strong P.E. - - -1.012*** 0.084 -0.436*** 0.084
Weak P.E. - - -1.086*** 0.064 -0.352*** 0.064
Notes: The results are based on 6,244 observations, corresponding
to two to four potential entrants for 2,582 census tracts. Standard
errors are obtained from resampling of markets with replacement
1,000 times). Asterisks indicate the statistical significance at the 1%
(∗∗∗), 5% (∗∗), and 10% (∗) levels.
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Table 9: First Stage Regressions with Different Specifications

X2,1 X2,2

Variable Spec.(1) Spec.(2) Spec.(1) Spec.(2)
Focal Pop (in 000’s) 0.001 0.024** -0.002 0.009
Focal % Female 0.075 0.086 0.157 0.081
Focal % Senior 0.009 0.269 0.126** 0.171
Focal % White 0.105 0.122 -0.394** 0.340
Focal % Black 0.047 0.054 -0.192 -0.127
Focal % Native 0.010 0.012 -0.179* -0.160
Focal % Asian -0.231 -0.739** -0.433** -0.229
Focal % Hispanic 0.160*** 0.277** -0.091 -0.120
Focal % College 0.109 0.222 0.123* -0.422**
Focal % Labor force -0.140** -0.578** -0.341*** -0.883***
Focal % Work home -0.014 0.084 -0.327*** -0.744***
Focal % Long comm. -0.014 -0.198 0.342*** 0.396***
Focal HH income -0.001** -0.002** 0.000 0.001
Focal HH size 0.000 0.016 0.011*** 0.016
Focal Pop density -0.005 0.001 -0.011 0.002
Focal % Rural -0.098*** 0.003 -0.080*** -0.111
Focal Mostly water -0.235*** -0.184*** 0.066 0.083
Focal # Incumbents -0.017*** -0.076*** 0.021*** 0.026
Excluded Instruments
Lagged Pop (in 000’s) 0.003 0.049* 0.030*** 0.023
Lagged % Female 0.203 4.858 0.416 1.851
Lagged % Senior 0.265** 0.164 0.212* -0.102
Lagged % White 0.544*** 0.257 0.135 0.394
Lagged % Black -0.392** -0.883** -0.061 -0.983***
Lagged % Native -0.556*** -0.731** -0.179 -0.844**
Lagged % Asian -0.338 0.998 -0.331 -0.293
Lagged % Hispanic -0.050 0.043 0.109 -0.502**
Lagged % College 0.069 -0.294 0.143 -0.825***
Lagged % Labor force 0.089 -0.062 -0.177* 3.387***
Lagged % Work home 0.200 -0.018 -0.225 -1.153**
Lagged % Long comm. 0.078 0.223 -0.022 0.447**
Lagged HH income 0.001** 0.010*** 0.003*** 0.025***
Lagged HH size 0.011 0.030 0.014 0.046**
Lagged Pop density -0.006 0.002 0.014 0.054***
Lagged % Rural 0.007 0.204** -0.151*** 0.277***
Lagged Mostly water -0.496*** -0.780*** -0.591*** -1.023***
Intercept 0.408* -1.385 0.329 -1.597
Including squared terms No Yes No Yes
# of Regressors 35 69 35 69
Adjusted R2 0.068 0.077 0.306 0.333
Notes: To save space, we only report estimates for (X1,Z) in
specification (2). All excluded instruments are lagged market
attributes in neighboring markets.

56


	Introduction
	Discrete Bayesian Games with Endogenous States
	The Model and Equilibrium
	Identifying Assumption and Discussion
	Identification via Control Functions
	Further Discussion: Extensions

	Estimation
	Asymptotic Properties of the 2SNPL Estimator

	Empirical Study: An Entry Game of Cellphone Service Providers
	The U.S. Cellphone Service Industry at a Glance
	Cellular Network Investment
	T-Mobile and Sprint Merger: Policy Considerations
	Data Sources
	Variable Definition and Sample Construction
	Local markets: census tracts
	Sample construction
	Summary statistics: the Big Four's cellphone deployment
	Summary statistics: market attributes

	Instrumental Variables
	Estimation Results
	Counterfactual Results: Evaluating the Merger and the Merger Remedy 

	Conclusion
	References
	Appendices
	Proofs
	Monte Carlo Evidence
	Homogeneous competitive effects
	Heterogeneous competitive effects

	Cellular Network Explained
	Robustness of Table 3
	First-stage Results


