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Summary
We consider peer effect estimation in social network models where some network

links are incorrectly measured. We show that if the number or magnitude of mismea-
sured links does not grow too quickly with the sample size, then standard instrumental
variables estimators that ignore these measurement errors remain consistent, and stan-
dard asymptotic inference methods remain valid. These results hold even when the
link measurement errors are correlated with regressors or with structural errors in the
model. Simulations and real data experiments confirm our results in finite samples.
These findings imply that researchers can ignore small numbers of mismeasured links
in networks.
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1. INTRODUCTION

In many social and economic environments, an individual’s behavior or outcome (such as
a consumption choice or a test score) depends not only on his or her own characteristics,
but also on the behavior and characteristics of other individuals. Call such dependence
between two individuals a link, and call individuals with such links friends. A social
network consists of a group of linked individuals. Each individual may have a different
set of friends in the network, and each individual may assign heterogeneous weights to his
or her links. The structure of a social network is fully characterized by a square adjacency
matrix, which lists all links (with possibly heterogeneous weights) among the individuals
in the network.
Much of the econometric literature on social networks focuses on disentangling and

estimating various social or network effects, based on observed outcomes and charac-
teristics of network members. These structural parameters include the effects on each
individual’s outcome by (i) the individual’s own characteristics (direct effects) and pos-
sibly group characteristics (correlated effects), (ii) the characteristics of the individual’s
friends (contextual effects) and (iii) the outcomes of the individual’s friends (peer ef-
fects). Standard methods of identifying and estimating these structural network effect
parameters assume that the adjacency matrix of links among individuals in the sample
is perfectly observed.

1.1. Our contribution. We consider the case where some network links are misclas-
sified, or generally measured with errors. Here we provide good news for empirical re-
searchers, by showing that relatively small amounts of measurement error in the network
can be safely ignored in estimation. More precisely, we show that instrumental variable
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estimators like Bramoullé, Djebbari and Fortin (2009), and their standard errors, remain
consistent and valid, despite the presence of misclassified, unreported, or mismeasured
links, as long as the number and size of these measurement errors grow sufficiently slowly
with the sample size. Moreover, these results hold even when the measurement errors are
correlated with the regressors, or with the model errors. In Section 1.2 below, we give
examples of how such measurement errors arise in real applications. In Section 4 we
provide detailed conditions for these errors to grow at these sufficiently slow rates.
It may not be surprising that measurement errors growing at sufficiently slow rates

are asymptotically negligible, but it is also not automatic. Slow measurement error rates
could still lead to substantial estimation errors if the stochastic order of quadratic terms
in the errors of the parameter estimates can not be bounded. What we show is that, in
the case of two-stage least squares (2SLS) estimators of network models, minimal and
standard regularity conditions suffice to bound these terms.

1.2. Motivation. There are many reasons why network links can be mismeasured in
practice. In some data sets, links are imputed from measures of proximity or similarity of
individuals (e.g., use of distance as a link in gravity models of trade). Such imputations
are generally imperfect, resulting in measurement errors in the magnitudes of links.
Mismeasurement may also arise because links that are observed in one context may

be irrelevant for outcomes in another context under study. For instance, two people who
are observed as linked on a social media platform may be connected there for business or
political reasons, but have no effect on each other’s personal outcomes (or vice versa). Or
in a school setting, some but not all reported friends may be study partners who affect
academic performance.
Even in data sets where all observable links are directly relevant for observed outcomes,

link data may contain a variety of reporting or recording errors. For example, studies that
focus on links within groups, such as within classrooms or villages, may not report links
across groups (e.g., friendships with people in other schools). In this case, measurement
errors are caused by unrecorded links between the groups.
Another example is a panel data model of social networks, where a slowly evolving

network is only observed in some intermittent time periods, and is assumed to stay fixed
in between those periods. In this case, the measurement errors are due to the unobserved
formation (or dissolution) of new (or existing) links between those observation periods.
A third example is when sample-collecting surveys limit the number of links (such as

the number of friends) that a respondent can report, thus leading to missing links for
popular individuals. Yet another example is when the link data collected from surveys
have recall or response errors. For instance, two individuals may report different responses
to the question of whether they are friends, leading to uncertainty in how an undirected
link between them should be recorded. Or more simply, surveyors may make occasional
mistakes in recording responses.
The main finding of our paper is as follows: if the size of measurement errors in the

reported adjacency matrix is relatively small (i.e., grows slowly with the network size n),
then asymptotic theory that ignores these measurement errors provides a good approxi-
mation for estimation and inference. Furthermore, in all four examples mentioned above,
we provide specific, intuitive conditions under which this “small error” property holds
(Section 4).

1.3. The Model. With a sample of n individuals, let Yn = (y1, ..., yn)
′ ∈ Rn be a vector

of individual outcomes; let ιn = (1, ..., 1)′ and ϵn = (ϵn,1, ..., ϵn,n)
′ be n-dimensional
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column vectors of ones and individual errors. Let Xn = (x1, ..., xn)
′ be an n-by-K matrix

consisting of n vectors of exogenous regressors xi ∈ RK for i ≤ n. Let G∗
n be an actual

n-by-n adjacency matrix (a.k.a. network structure) that lists the actual links for peer
effects and contextual effects.1 Let G∗

n,ij denote the element in row i and column j of
G∗

n. We have G∗
n,ij > 0 if i and j are linked for peer effects and G∗

n,ij = 0 otherwise.
For each i, let G∗

n,ii = 0 by convention in the literature. Note that G∗
n,ij can be binary,

with G∗
n,ij ∈ {0, 1} indicating the absence or presence of a link, or continuous and non-

negative, with G∗
n,ij ∈ R+ uniformly bounded and signifying the strength of the link.

We assume a linear social network model:

Yn = α0ιn + λ0GnYn +Xnβ0 +GnXnγ0 + ϵn, (1.1)

where Gn can be either the original adjacency matrix G∗
n, or a row-normalized version of

G∗
n. For example, a row-normalized Gn is defined by Gn,ij = G∗

n,ij/
(∑n

j′=1G
∗
n,ij′

)
. Row

normalization is common in practice; our results hold with or without such normalization.
Throughout the paper, we maintain that mini

∑n
j=1G

∗
n,ij > 0 with probability one, so

the row normalization is well defined almost surely. This means there are no isolated
individuals in the network, or equivalently no rows of zeros in G∗

n almost surely. This
condition is standard in the literature.
The parameters in equation (1.1) are as follows: λ0 ∈ R is a scalar peer effect, β0 ∈ RK

is a vector of direct effects, γ0 ∈ RK is a vector of contextual effects, and α0 ∈ R is the
structural intercept. If individuals are divided into groups (such as villages or classrooms),
then what are known as correlated effects can be modeled as group-level fixed effects,
i.e., group membership indicators that are included in the term of direct effects (Xnβ0)
but not in the term of contextual effects (GnXnγ0).
Our goal is to estimate θ0 ≡ (α0, λ0, β

′
0, γ

′
0)

′. If Yn, Xn, G
∗
n (and hence Gn) were

perfectly observed, the structural model would take the form of a linear regression of Yn on
a constant and the regressors GnYn, Xn, and GnXn. However, even if Xi is uncorrelated
with εj for all i and j, making Xn and GnXn strictly exogenous, this regression could
not be consistently estimated by ordinary least squares, because of the endogeneity of
GnYn. Instead, one can use an instrument-based, 2SLS estimator using friends of friends
of i to construct instruments for GnYn (see, e.g., Lee (2007) and Bramoullé, Djebbari
and Fortin (2009)). For example, G2

nXn can be instruments for GnYn. To implement
this 2SLS estimator, one needs perfect measures of G∗

n so that the regressors GnYn and
GnXn, and instruments such as G2

nXn, can all be constructed without errors.

1.4. Estimation with misclassified links. Instead of observing Yn, Xn, and the true
adjacency matrices G∗

n, we assume that what is observed is Yn, Xn, and a mismeasured
adjacency matrix H∗

n. The differences H
∗
n−G∗

n are the measurement errors in links. Like
G∗

n, the matrix H∗
n by convention has zeros on the diagonal.

For a given pair of individuals i and j, if G∗
n,ij equals zero or one, misclassification of

that link corresponds toH∗
ij = 1−G∗

ij . More generally, measurement error in a link occurs
whenever H∗

ij ̸= G∗
ij . The measurement errors can be any combination of misclassified

1We can extend the results of this paper to allow the peer and contextual effects to operate through
different adjacency matrices – say, G∗

n and C∗
n respectively – provided one of the two conditions hold:

either (a) the data contain two distinctive noisy measures for G∗
n and C∗

n respectively with each satisfying
the condition of “small order” measurement errors (Assumption 1), or (b) the differences between G∗

n
and C∗

n are small and the data contains a single noisy network measure with small measurement errors
in the sense of Assumption 1.
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links and incorrectly weighted links. Similarly, let Hn be either a row-normalized version
of H∗

n, or the noisy measure H∗
n itself.

We investigate the asymptotic properties of 2SLS estimation of (1.1) when the mis-
measured adjacency matrix H∗

n is observed instead of the true unknown matrices G∗
n. So

instead of a 2SLS regression of Yn on GnYn, Xn, and GnXn, using as instruments G2
nXn,

Xn, and GnXn, we consider a 2SLS regression of Yn on HnYn, Xn, and HnXn, using
as instruments H2

nXn, Xn, and HnXn. Note this means that both some regressors and
some instruments are mismeasured, and that the measurement errors in regressors and
instruments are correlated. Moreover, we do not impose any uncorrelation or conditional
independence conditions on the measurement errors. Those conditions are frequently
used in the literature of measurement errors. For example, we allow the measurement
errors in H∗

n −G∗
n to be arbitrarily correlated with Xn, Yn, and ϵn.

We find that if the magnitude of measurement errors grows at a rate slower than√
n, then the 2SLS estimator remains

√
n-consistent and asymptotically normal, and the

usual formulas for inference and standard errors remain valid. As a result, under these
conditions, researchers can safely ignore the presence of misclassified or mismeasured
links, because the estimator and inference based on H∗

n instead of G∗
n remain consistent

and valid.
We also find that if the magnitude of measurement errors grows at a rate faster than√
n but slower than n, then the 2SLS estimator is still consistent. However, in this case,

the rate of convergence of the coefficient estimators is less than
√
n (due to a bias term

that shrinks at a slower rate than
√
n), so the usual standard error formulas would no

longer apply.

1.5 Outline. Section 2 is a short literature review. Section 3 formally presents our
results for 2SLS estimation of mismeasured networks. Section 4 provides a few empirical
examples where the order of measurement errors in networks are sufficiently small. This
is followed by some simulation results (Section 5) and an empirical illustration (Section
6). Proofs are in the appendix.

2. LITERATURE REVIEW

Social network models typically allow an individual’s outcome to depend on his or her own
characteristics, contextual influences from peers’ characteristics, and peer effects from
peer outcomes. The traditional linear-in-means model (which assumes everyone is linked
with everyone else with equal weights, either within groups or in the whole network)
suffers from the “reflection problem” as pointed out by Manski (1993). This identification
problem can be solved in models with more complicated social interaction structures.
Lee (2007) uses conditional maximum likelihood and instrumental variable methods to
estimate peer and contextual effects in a spatial autoregressive social interaction model,
assuming links are perfectly observed in the data. Bramoullé, Djebbari and Fortin (2009)
and Lin (2010) provide specific conditions on observed network structure in order to
identify peer effects in social interaction models, using characteristics of friends of friends
as instruments.
Given results like these, the model described in the introduction has been widely used

to estimate peer effects in a variety of settings. Examples include studies of peer influence
on students’ academic performance, sport and club activities, and delinquent behaviors
(Hauser et al., 2009; Calvó-Armengol et al., 2009; Lin, 2010; Lee et al., 2010; Liu et al.,
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2014; Boucher et al., 2014; Patacchini and Zenou, 2012). These models all assume that
the network structure is correctly measured in the data.
Regarding selection and comparison of adjacency matrices, LeSage and Pace (2009)

use the Bayesian posterior distribution to choose among models with different adjacency
matrices. Empirical research may also report estimates using different link weights as
robustness checks. These practices are feasible in, e.g., spatial econometric models, where
link weights are assumed to be a function of observable geographic information, as in
gravity models of trade. Errors in constructing such links would fit in our framework.
There is also a small literature on identification and estimation of peer effects when
networks are unobserved. Examples include de Paula et al. (2018) and Lewbel et al.
(2023).
The issue of potentially misclassified links is acknowledged and discussed in Patacchini

and Venanzoni (2014), Liu et al. (2014), and Lin (2015) among others. But these papers
do not provide a formal analysis of the asymptotic impact of mismeasured links on the
performance of standard estimators. Chandrasekhar and Lewis (2016) show that even
with randomly selected links, partial sampling can lead to non-classical measurement
errors and consequently bias in standard estimation methods. Griffith (2022) studies the
impact on inference when misclassification in the adjacency matrix occurs because of
binding caps on the number of self-reported links. Boucher and Houndetoungan (2022)
estimate peer effects using partial network data when a consistent estimate of aggregate
network statistics is available to the researcher. Our results fill a void in the literature by
analyzing how ignoring small amounts of general measurement errors in the adjacency
matrix affects the consistency of standard estimators and the validity of inference.2

3. 2SLS ESTIMATION WITH MISMEASURED LINKS

We derive the asymptotic properties of a 2SLS estimator for the model in (1.1) when the
matrix with measurement errors H∗

n is used in place of the actual, unknown G∗
n. This

means the regressors GnYn, GnXn and instruments G2
nXn are replaced by HnYn, HnXn

and H2
nXn in the estimator.

Write equation (1.1) as

Yn = Rnθ0 + ϵn = R̃nθ0 + ϵ̃n,

where Rn ≡ (ιn, GnYn, Xn, GnXn) is the true matrix of regressors, R̃n ≡ (ιn, HnYn,
Xn, HnXn) is its observed proxy, θ0 is the true value of θ, and ϵ̃n ≡ ϵn−λ0∆nYn−∆nXnγ0
with ∆n ≡ Hn −Gn.

Let Ṽn ≡ (ιn, H
2
nXn, Xn, HnXn) denote an n-by-(3K +1) matrix of instruments. This

Ṽn is an observable proxy for the (unknown) actual instrument Vn ≡ (ιn, G
2
nXn, Xn, GnXn).

2Referring to potential omission of friends, Patacchini and Venanzoni (2014) say that, “in the large
majority of cases (more than 94%), students tend to nominate best friends who are students in the same
school and thus are systematically included in the network (and in the neighborhood patterns of social
interactions)”. Liu et al. (2014) report that “less than 1% of the students in our sample show a list of
ten best friends, less than 3% a list of five males and roughly 4% a list of five females. On average, they
declare that they have 4.35 friends with a small dispersion around this mean value (standard deviation
equal to 1.41), and in the large majority of cases (more than 90%) the nominated best friends are in the
same school.” Lin (2015) says, “this nomination constraint only affects a small portion of our sample,
as less than 10% of the sample have listed five male or female friends. Therefore, this restriction should
not have a significant impact on the results.” This last speculation is precisely what our first set of
results establishes: consistency of the estimator will not be affected if the number of omitted (and hence
misclassified) links is sufficiently small.
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The 2SLS estimator is:

θ̂ =
[
R̃′

nṼn(Ṽ
′
nṼn)

−1Ṽ ′
nR̃n

]−1

R̃′
nṼn(Ṽ

′
nṼn)

−1Ṽ ′
nYn. (3.2)

We show that this estimator is consistent when the measurement errors in the adjacency
matrices are small in the following sense (where

∑
i is shorthand for

∑n
i=1):

Assumption 3.1.
∑

i

∑
j E
(∣∣H∗

n,ij −G∗
n,ij

∣∣) = O(ns) for some 0 < s < 1.

Assumption 3.1 requires the expected sum of absolute measurement errors in G∗
n to

increase at a rate slower than the sample size n. This condition holds, for example, if
measurement errors occur only for a subset of individuals of order O(ns) with s < 1, and
if the magnitude and expected number of mismeasured links for each individual in the
subset are bounded. See Section 4 for more examples of how this condition holds under
a variety of contexts.
Denote Sn ≡ In − λ0Gn, where In is an n-by-n identity matrix. When Sn is non-

singular, the reduced form for outcomes is:

Yn = S−1
n (α0ιn +Xnβ0 +GnXnγ0 + ϵn).

We maintain the following regularity conditions.

Assumption 3.2. (i) ϵn is independent from Xn; individual errors ϵn,i are independent
across i, with E(ϵn,i) = 0. There exists a constant M0 <∞ such that Pr{supi≤nE(|ϵn,i| |
Hn) ≤ M0} = 1 for all n. (ii) G∗

n is a sequence of pre-determined, non-stochastic ma-
trices, and Sn is non-singular for all n. The sequences {G∗

n}, and {S−1
n } are uniformly

bounded in both row and column sums. The row and column sums in the sequence {H∗
n}

are uniformly bounded in probability. (iii) The elements of Xn are uniformly bounded for
all n; V ′

nVn/n converges in probability to a non-singular matrix as n→ ∞.

Part (i) of Assumption 3.2 states that Xn are exogenous. Notice that we do not impose
exogeneity of H∗

n, i.e., the measurement errors H∗
n −G∗

n can be correlated with both ϵn
and Xn. This is in sharp contrast to most measurement error models, which typically
require measurement errors to be independent of some observed or unobserved variables
for point identification and estimation. Part (ii) requires the row and column sums of G∗

n

and H∗
n to be uniformly bounded, and that the reduced form of outcomes is well-defined.

Invertibility of Sn holds if
∑

j |λGn,ij | < 1 for all i. In the special case of non-negative
elements and row-normalization in G∗

n, |λ| < 1 is sufficient for non-singular Sn. Part (iii)
requires the matrix of actual instruments to have full column rank. The assumptions
above on the actual adjacency matrix Gn are standard for linear social network models.

Proposition 3.1. Under Assumptions 3.1 and 3.2,

θ̂ − θ0 = Op(n
−1/2 ∨ ns−1).

This proposition holds because we can establish the following relationship between the
feasible 2SLS estimator, which uses the noisy measure with errors Hn, and its infeasible
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version which uses the unobserved actual Gn:

θ̂ − θ0 =

 R̃′
nṼn
n

(
Ṽ ′
nṼn
n

)−1
Ṽ ′
nR̃n

n

−1

R̃′
nṼn
n

(
Ṽ ′
nṼn
n

)−1
Ṽ ′
nϵ̃n
n

(3.3)

=

[
R′

nVn
n

(
V ′
nVn
n

)−1
V ′
nRn

n

]−1
R′

nVn
n

(
V ′
nVn
n

)−1
V ′
nϵn
n

+Op(n
s−1).

Under the regularity conditions in Assumption 3.2, (R′
nVn)/n and (V ′

nVn)/n both con-
verge in probability to constant matrices with full rank (2K+2). Under the exogeneity of
Xn, the term V ′

nϵn/n is Op(n
−1/2) by an application of the Chebyshev’s Inequality. Com-

bining these results, we conclude that the estimation errors in (3.3) is Op(n
−1/2 ∨ns−1).

Thus the 2SLS estimator θ̂, which uses H2
nXn as an instruments for HnYn, is consistent

when s < 1.
Furthermore, if s < 1/2, the effect of measurement errors vanishes fast enough so that

it does not affect the
√
n-rate of convergence or the asymptotic distribution of the 2SLS

estimator. This is formalized in the next proposition.

Proposition 3.2. Under Assumptions 3.1 and 3.2, if s < 1/2 then

√
n(θ̂ − θ0)

d→ N(0,Ω),

where Ω is the asymptotic variance of the 2SLS estimator using the actual adjacency
matrix Gn; and Ω can be consistently estimated by Â−1B̂Â−1, where Â ≡ 1

n R̃
′
nPnR̃n

and B̂ ≡ 1
n R̃

′
nPnΣ̂nPnR̃n, with Pn ≡ Ṽn

(
Ṽ ′
nṼn

)−1

Ṽ ′
n and Σ̂n being a diagonal n-by-n

matrix whose i-th diagonal entry is the square of the i-th residual in Yn − R̃nθ̂.

As noted in the introduction, even slowly growing measurement errors could asymp-
totically corrupt θ̂ if the stochastic order of quadratic terms in θ̂− θ0 isn’t bounded. The
closed form of the 2SLS estimator plays a key role in deriving our results. In our proofs,
this closed form allows us to use Cauchy-Schwartz inequalities to bound the stochastic
order of these errors. Key conditions we use for this are boundedness of S−1

n and Xn.
Without those, the estimation errors do not obey the stochastic orders we derive.

4. EXAMPLES

This section provides several examples of how Assumption 3.1, which requires a slow rate
of growth in link measurement errors, may hold in a range of empirical contexts.

Example 1. (Partitioning groups) Suppose the sample consists of individual units
from many known, mutually exclusive groups (e.g., individual households from many
villages, or individual students from many schools). Sometimes, data on links within each
group is collected (e.g., kinship relationships between households within each village, or
friendships between students within each school), while information about links that
might exist between individual units from different groups is not collected. In such cases,
all non-zero cross-group links are misclassified as zeros.
In this setting, Assumption 3.1 holds under intuitive conditions. A sufficient condi-

tion for Assumption 3.1 would be that the probability of a nonzero link across groups
diminishes faster than some rate as the number of groups in the sample (denoted by
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M) increases. As we show below, the rate at which the probability for cross-group links
diminishes that is sufficient for Assumption 3.1 depends on whether group sizes grow
with the sample size or not. If group sizes grow, then the faster they grow, the slower is
the required rate of decrease in the probability for cross-group links.
First, consider a scenario where there are M groups, and each group m contains a

finite, constant number of members nm, which for simplicity is assumed to be the same
for all groups, so nm = c ∈ N++ for all m, and the sample size by construction is
n = cM .3 In this case, the asymptotic experiment lets M → ∞ with nm fixed at c for
all m. Let the probability of friendship (i.e., a nonzero link) between individuals from
two groups be qn = O(n−δ1) for δ1 > 0. Suppose the sample correctly reports all links
within groups, but fails to report any information about links that may exist across
groups. The order of the expected number of misclassified links in this sample is then
M × (M − 1)× qn = O(M2−δ1). Therefore, Assumption 3.1 holds as long as δ1 ∈ (1, 2),
i.e., the probability of cross-group friendships diminishes fast enough as the number of
groups increases.
Next, consider an alternative scenario where the asymptotic experiment allows the

group size to increase as the number of groupsM → ∞. Let the size of each group grow at
an order of O(Mζ) for ζ > 0 so that the order of the sample size n is O(M1+ζ). As before,
let the probability of a link between individuals from different groups be qn = O(n−δ2).
Again, suppose the sample correctly reports all links within each group but misses all
links between different groups. The order of the expected number of misclassified links in
the sample is then M × (M − 1)×O(Mζ)× qn = O(M2+ζ−(1+ζ)δ2). Hence Assumption
3.1 holds as long as δ2 ∈ ( 1

1+ζ , 1 +
1

1+ζ ).

Example 2. (Panel data) Suppose the sample consists of L cross-sectional individual
units, each of which is observed for T time periods. The sample size is n = LT . For
example, the sample could report weekly test scores of L students over the course of T
weeks. Let the structural social effects θ0 be fixed over time t = 1, 2, .., T and assume
the structural errors ϵi,t are i.i.d. across i ≤ L and t. The panel data model fits in the
structural form in (1.1), with Yn ≡ (Y ′

n,1, Y
′
n,2, ..., Y

′
n,T )

′ where each Yn,t is a column
vector that stacks L individual outcomes at time t. The other arrays Xn and ϵn are
defined in a conformable manner. In this case, Gn is a block-diagonal matrix, with the
t-th diagonal block Gn,t being an L-by-L adjacency matrix that contains all links in the
network at time t.

Measurement errors inGn occur if the adjacency matricesGn,t evolve over time, but the
researcher only gets to observe them occasionally, i.e., over a strict subset of time periods
Tobs ⊂ {1, 2, ..., T}, and assumes the network structure remains constant between those
intermittent periods of observation. For example, Tobs = {1} means that the researcher
only measures the adjacency matrix correctly once, as Gn,1, in the first period, but then
(incorrectly) assumes it stays constant at Gn,t = Gn,1 for all t = 2, ..., T . In this case, the
magnitude of measurement errors is determined by the number of existing friendships
that are dissolved, by the changes in the strength of existing links, or by new links that
are created in the subsequent periods t ≥ 2. For another example, consider the case of
weekly test scores above. Suppose the network is only observed once per semester. Then
Tobs only contains the number of semesters of observations, while T is the number of

3The result here can be immediately extended to allow for heterogeneous group sizes, provided nm < c
is uniformly bounded by a finite constant c for all m. In that case, the sample size is n =

∑
m nm ≤

cM = O(M).



Ignoring Measurement Errors in Social Networks 9

weeks for which we observe test scores, and measurement error arises because Gn,t is
held fixed for all weeks within each semester.
First, consider a large-L, small-T setting, where the asymptotic experiment lets L→ ∞

while holding T fixed at a constant integer. In this case, n = TL = O(L). Suppose
Tobs = {1}, and suppose the probability of dissolving an existing friendship or creating
a new one in each subsequent period t ≥ 2 is ψn = O(n−δ3) for δ3 > 0. The order of the
expected number of mismeasured links is then (T − 1) × L × (L − 1) × ψn = O(n2−δ3),
and Assumption 3.1 holds if δ3 ∈ (1, 2).
Next, consider an alternative large-L, large-T setting, where the asymptotic experiment

lets L → ∞ and T → ∞ simultaneously. Suppose the number of time periods with no
network measurement, i.e. T −#(Tobs), grows at rate O(T ξ1) for ξ1 ∈ (0, 1). This means
the adjacency matrix is correctly measured with high frequency in the sense that the
number of time periods with incorrectly imputed network measures grows slower than T .
Let’s characterize the relative order of individual units as L = O(T ξ2) for ξ2 > 0 so that
n = LT = O(T 1+ξ2). As before, let the probability for dissolving existing friendships or
creating new ones during the periods with no network measurement, i.e., t ∈ T \Tobs, be
ψn = O(n−δ4) for δ4 > 0. In this case, the order of the expected number of misclassified
links in the full sample is then L×(L−1)×O(T ξ1)×ψn. It then follows that Assumption

3.1 holds if ξ1 + ξ2 > 1 and δ4 ∈
(

ξ1+ξ2−1
1+ξ2

, ξ1+2ξ2
1+ξ2

)
.4 That is, Assumption 3.1 holds if

the probability of link changes over time is sufficiently low, while the cross-sectional
dimension in the panel data grows fast enough relative to the number of time periods.5

Example 3. (Caps on self-reported links from surveys) Suppose the sample con-
sists of n individuals in a single, large network. Researchers who collect link information
through survey responses sometimes specify a cap on the number of links that may be
reported by each individual. For example, a questionnaire may ask each student in a class
to name up to five friends. In this case, link measurement errors are caused by censoring
due to the cap when it is binding. That is, a student who had seven friends but could
only report five would result in two links that are mismeasured as zero. The order of
these errors depends on whether (and how fast) the cap increases with the sample size,
as well as the link formation probability.
Let dn,i denote the degree (the total number of friends) an individual i actually has

in the sample (which may be more than the number reported). Assume there exists a
finite integer d such that P{dn,i ≤ d} = 1 for all i and n. That is, the total number
of friends an individual may actually have is bounded, regardless of the sample size.
This reflects the reality that link formation and maintenance are costly in terms of
individual time and energy. Furthermore, let κn denote a sequence of specified caps on the
maximum number of reported links in the sample-collecting survey; this sequence of caps
increases with the sample size n, possibly at a very slow rate such as O(log n). For each
individual i, the number of missing links due to the binding cap is then (dn,i−κn)+, where
(·)+ ≡ max{·, 0}. Under the specified conditions, E[(dn,i − κn)+] = o(1). It then follows

4To see this, note that O(L2) × O(T ξ1 ) × ψn = O(T 2ξ2+ξ1−δ4(1+ξ2)) = O(n(2ξ2+ξ1)/(1+ξ2)−δ4 ).
Imposing inequalities to ensure this order is O(ns) for s ∈ (0, 1) implies the range of conformable δ4.
5Our benchmark analysis assumes i.i.d. time-varying errors, which is restrictive in a panel data setting.
However, our results generalize to allow some degree of error dependence in the usual way, since the
estimator takes the form of linear two-stage least squares.
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that Assumption 3.1 is satisfied, because the expected magnitude of overall measurement
errors grows at a rate slower than the sample size n.6

Example 4. (Recall or coding errors in survey responses) Samples collected from
survey responses are sometimes subject to recall errors (i.e., respondents have incorrect
memory of past events or status) or coding errors (i.e., data analysts make mistakes while
coding or processing raw responses). These measurement errors may grow at a slow rate
relative to the sample size, especially if there is economies of scale in the quality control
of data collection, or if the survey provides multiple noisy, proxy measures of the same
links.
To illustrate, consider a sample network Gn of n members, where the probability of

forming a friendship between any two members is πn = O(n−δ5) with δ5 > 0. Suppose
the survey responses provide two independent measures of Gn (e.g., two responses about
the same undirected link), denoted as Hn and Wn respectively, and that each of these
two noisy measures misses each actual, existing link in Gn independently at a rate of
ϕn = O(n−ν) for ν > 0. Suppose the data analyst records the (i, j)-th entry of the network
as max{Hn,ij ,Wn,ij}. Then the order of the expected measurement errors, i.e., the total
number of nonzero links recorded as zero, is given by n×(n−1)×πn×ϕ2n = O(n2−δ5−2ν).
Therefore, Assumption 3.1 holds as long as δ5 ∈ (1− 2ν, 2− 2ν).

5. SIMULATION

We investigate the performance of the 2SLS estimator with mismeasured links using
simulated data. The structural equation in our data-generating process (DGP) is (1.1),
where xi consists of two regressors: the first is independently drawn from {−1, 1, 2} with
equal probability, and the second is from N(0, 1). The error terms εn,i are i.i.d. from
N(0, 1). Links in G∗

n are independent draws from a Bernoulli distribution with success
probability pn = µ/n for some constant µ < ∞. By this construction, the expected
number of friends for each individual is µ. Let Gn be a row-normalization of G∗

n.
We generate misclassified links using H∗

n,ij = G∗
n,ij · e1i + (1 − G∗

n,ij) · e2i for i ̸=
j, where e1i and e2i are Bernoulli random variables with success probabilities 1 − τ1i
and τ2i respectively. Therefore, τ1i = Pr{H∗

n,ij = 0|G∗
n,ij = 1}, and τ2i = Pr{H∗

n,ij =

1|G∗
n,ij = 0}. We set τ1i = ρn,in

s−1 and τ2i = 100ρn,in
s−2, where ρn,i = (

∑n
j=1G

∗
n,ij/µ+

|εn,i|)/3. For each individual i, the misclassification rate increases in the number of i’s
friends

∑n
j=1G

∗
n,ij , and in the magnitude of i’s unobserved error |εn,i|. This construction

makes the measurement errors both endogenous (correlated with the model errors) and
correlated with the actual row-normalized Gn.

We set the model parameters to be α = 1, λ = 0.4, β = (1.5, 2)′ and γ = (0.9, 0.6)′.
Let µ = 20, and experiment with the rates in measurement errors s = 0.1, 0.3, 0.5, and
0.7. We experiment with sample sizes n = 200, 500, and 1000. For each value of s and n,
we simulate T = 200 samples, calculate the mean squared error, the bias, the standard
deviation of the 2SLS estimator using its empirical distribution across these T = 200
samples, and report the average standard error of the estimator from these samples.

6Assumption 3.1 can also be satisfied under weaker conditions, provided the right-tail probability mass
of dn,i diminishes sufficiently fast relative to the sample size and to the cap on self-reported links.
In a model of dyadic link formation, establishing this result formally would require characterizing the
magnitude of errors in the normal approximation of a binomial distribution.
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We also report the average number of misclassified links over these T = 200 simulated
samples.

Table 1. 2SLS Estimators with Misclassified Links
n = 200 n = 500 n = 1000

m.s.e. bias std a.s.e. m.s.e. bias std a.s.e. m.s.e. bias std a.s.e.
True Gn Mis.# 0 0 0
α 3.880 -0.114 1.971 2.197 1.519 0.031 1.235 1.310 0.762 0.065 0.873 0.887
λ 0.336 0.025 0.581 0.654 0.131 -0.010 0.362 0.386 0.068 -0.019 0.260 0.264
β1 0.003 0.005 0.058 0.058 0.001 -0.003 0.036 0.036 0.001 -0.000 0.027 0.026
β2 0.005 0.008 0.072 0.073 0.002 0.001 0.048 0.045 0.001 -0.000 0.032 0.032
γ1 0.802 -0.029 0.898 1.006 0.301 0.019 0.549 0.597 0.165 0.030 0.406 0.410
γ2 1.571 -0.040 1.256 1.348 0.561 0.020 0.750 0.796 0.278 0.032 0.528 0.545
s = 0.1 Mis.# 105 124 134
α 4.100 -0.058 2.029 2.254 1.576 0.033 1.258 1.325 0.780 0.070 0.883 0.894
λ 0.365 0.008 0.605 0.672 0.135 0.010 0.368 0.391 0.070 -0.020 0.263 0.266
β1 0.003 0.004 0.058 0.058 0.001 -0.003 0.036 0.036 0.001 -0.000 0.027 0.026
β2 0.005 0.008 0.072 0.073 0.002 0.001 0.048 0.045 0.001 -0.000 0.032 0.032
γ1 0.877 -0.015 0.938 1.033 0.307 0.015 0.556 0.604 0.168 0.030 0.410 0.413
γ2 1.610 -0.012 1.272 1.382 0.574 0.019 0.760 0.805 0.284 0.033 0.533 0.549
s = 0.3 Mis.# 304 428 534
α 4.599 0.058 2.149 2.388 1.678 0.014 1.2985 1.367 0.833 0.083 0.911 0.912
λ 0.405 -0.023 0.638 0.712 0.144 -0.002 0.380 0.403 0.074 -0.023 0.271 0.272
β1 0.004 0.003 0.059 0.059 0.001 -0.003 0.035 0.037 0.001 -0.000 0.027 0.026
β2 0.005 0.009 0.073 0.074 0.002 0.001 0.048 0.046 0.001 -0.000 0.032 0.032
γ1 0.949 0.018 0.977 1.094 0.334 -0.005 0.579 0.622 0.179 0.031 0.423 0.421
γ2 1.756 0.041 1.328 1.461 0.598 -0.005 0.775 0.830 0.305 0.035 0.552 0.560
s = 0.5 Mis.# 882 1486 2139
α 5.620 0.136 2.373 2.773 1.995 0.0670 1.414 1.519 1.060 0.133 1.023 0.982
λ 0.498 -0.032 0.706 0.828 0.172 -0.012 0.416 0.449 0.093 -0.035 0.303 0.293
β1 0.004 0.001 0.062 0.060 0.001 -0.003 0.036 0.037 0.001 -0.000 0.028 0.026
β2 0.005 0.011 0.073 0.075 0.002 0.001 0.049 0.046 0.001 -0.000 0.033 0.032
γ1 1.174 -0.022 1.086 1.272 0.408 -0.015 0.640 0.691 0.218 0.032 0.467 0.453
γ2 2.157 0.021 1.472 1.691 0.732 -0.021 0.857 0.921 0.376 0.041 0.614 0.602
s = 0.7 Mis.# 2549 5152 8513
α 17.93 0.433 4.223 4.212 4.581 0.253 2.131 2.075 1.812 0.157 1.340 1.291
λ 1.549 -0.095 1.244 1.252 0.395 -0.0470 0.628 0.613 0.158 -0.025 0.398 0.385
β1 0.004 0.002 0.066 0.064 0.002 -0.004 0.038 0.039 0.001 -0.001 0.028 0.027
β2 0.006 0.009 0.076 0.081 0.003 -0.001 0.052 0.048 0.001 0.001 0.033 0.033
γ1 3.643 -0.050 1.913 1.898 0.894 -0.058 0.946 0.934 0.374 -0.069 0.610 0.589
γ2 6.452 0.011 2.547 2.533 1.545 -0.047 1.245 1.250 0.649 -0.056 0.806 0.786
Note: m.s.e (mean squared error), bias, std (standard deviation) are calculated using the empirical distribution
of 200 estimates. “a.s.e.”is the average of standard errors in T = 200 samples.

Results are summarized in Table 1. We observe several patterns:

1. The 2SLS estimates of all parameters converge at
√
n rate. The mean-squared errors

decrease proportionately as the sample size increases.

2. Consistent with our asymptotic theory, the 2SLS estimator using the misclassified
adjacency matrix Hn works almost as well as its infeasible analog using the actual Gn

when the measurement error rate is s < 0.5. This suggests that the sample sizes we
consider are large enough for the asymptotic approximations to apply. Note that with
our DGP the estimates in Table 1 with s < 0.5 have error rates where the expected
number of misclassified links is less than n.

3. For all values of s, the average standard errors are close to the standard deviation
of the 2SLS estimators calculated from the T = 200 samples. This conforms with our
asymptotic theory, because the problem with inference for larger values of s is that
the bias in the estimator shrinks at rate ns−1. Similarly, with s ≥ 0.5, the parameter
estimates deteriorate primarily due to the bias rather than the variance.

4. With both the true and mismeasured adjacency matrices, the mean-squared errors are
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much smaller for the direct effects β than for the peer and contextual effects λ and γ.
The mean squared errors are also much lower for the discrete regressor effects β1 and γ1
than for the continuous regressor effects β2 and γ2.

6. APPLICATION

Lin and Lee (2010) model teenage pregnancy rates in the United States, using the fol-
lowing model (where the subscript of sample size n is suppressed):

Teeni = λ
∑n

j=1
GijTeenj +α+Eduiβ1+Incoiβ2+FHHiβ3+Blackiβ4+Phyiβ5+εi,

where Teeni is the teenage pregnancy rate in county i, which is the percentage of preg-
nancies among females who were 12-17 years old, and Gij is the (i, j)-th entry in the
row-normalization of an original adjacency matrix G∗, where G∗

ij = 1 if counties i and
j are neighboring counties. Edui is the education service expenditure (in units of $100),
Incoi is median household income (divided by $1000), FHHi is the percentage of female-
headed households, Blacki is the proportion of black population and Phyi is the number
of physicians per 1000 population, all at a county-level for county i.7

The sample size is n = 761. Among all the 761× 760 = 578, 360 entries (diagonal are
zero) in the original network G∗

n, there are 4, 606 non-zero links. We treat the adjacency
matrix reported in the sample as the true network, artificially introduce misclassified
links, and then evaluate how this affect the 2SLS estimates. We generate misclassified
links usingH∗

ij = G∗
ij ·e1i+(1−G∗

ij)·e2i, where e1i and e2i are Bernoulli with success prob-

abilities τ1i = ρin
s−1 and τ2i = 100ρin

s−2 respectively. We set ρi = min{(yi/y)2, 0.8},
so that for each individual i misclassification is more likely to happen the larger the
magnitude of the observed outcome yi.
We report 2SLS estimates using HX and H2X as instruments. Unlike our model, Lin

and Lee (2010) assume there are no contextual effects, i.e., γ = 0 in equation (1.1) so that
GX does not appear as regressors. In their case, one may just use GX as instruments
for Gy estimation. In comparison, our model has nonzero contextual effects, so we use
HX and H2X as instruments in 2SLS estimation.
Table 2 reports results based on T = 1000 Monte Carlo replications for each value

of s. Results are reported where the model is estimated both with and without row
normalization.
Consistent with our propositions, when the misclassification rate is low (s < 0.5), the

2SLS estimates and standard errors using the mis-measured Hn are very similar to those
based on Gn. The same is true for estimation based on matrices H∗

n and G∗
n that are not

row-normalized. When s increases, the bias and inaccuracy of the estimators increase,
as expected. In particular, the parameter estimates (especially λ) become quite biased
when s ≥ 0.5 (which, by our theory, is when bias shrinks at a slower rate than variance).

7The data are collected from 761 counties in Colorado, Iowa, Kansas, Minnesota, Missouri, Montana,
Nebraska, North Dakota, South Dakota, and Wyoming. See Lin and Lee (2010) for further details about
the data.
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Table 2. Estimation Results with Different Misclassification Rates
λ α 100β1 β2 β3 β4 β5 Mis. #

Row-normalization: Gij = G∗
ij/

(∑
j G

∗
ij

)
, Hij = H∗

ij/
(∑

j H
∗
ij

)
True 0.4813 6.1911 -0.9824 -0.1871 0.7347 0.1267 -0.4956 0

(0.079) (1.469) (0.651) (0.040) (0.063) (0.057) (0.188)
s = 0.1 0.4897 6.1085 -0.9910 -0.1878 0.7355 0.1289 -0.4980 125

(0.081) (1.480) (0.651) (0.040) (0.063) (0.057) (0.188)
s = 0.3 0.5132 5.8759 -1.0086 -0.1895 0.7375 0.1341 -0.5049 472

(0.085) (1.512) (0.652) (0.040) (0.063) (0.057) (0.188)
s = 0.5 0.6017 4.9578 -1.0542 -0.1943 0.7422 0.1465 -0.5227 1783

(0.099) (1.626) (0.654) (0.040) (0.063) (0.057) (0.189)
s = 0.7 0.8138 2.7629 -1.1726 -0.2092 0.7589 0.1683 -0.5535 6720

(0.139) (1.985) (0.660) (0.040) (0.064) (0.057) (0.191)
No row-normalization: Gij = G∗

ij , Hij = H∗
ij

True 0.0239 10.840 -1.5244 -0.2348 0.8151 0.2061 -0.5731 0
(0.009) (1.261) (0.669) (0.041) (0.064) (0.058) (0.194)

s = 0.1 0.0275 10.491 -1.5290 -0.2317 0.8087 0.2069 -0.5658 125
(0.009) (1.248) (0.666) (0.040) (0.064) (0.057) (0.193)

s = 0.3 0.0356 9.6492 -1.5361 -0.2239 0.7916 0.2079 -0.5463 472
(0.008) (1.216) (0.659) (0.040) (0.063) (0.057) (0.191)

s = 0.5 0.0486 7.5887 -1.5473 -0.2039 0.7351 0.2058 -0.4813 1783
(0.005) (1.130) (0.633) (0.038) (0.061) (0.055) (0.184)

s = 0.7 0.0442 4.9575 -1.5211 -0.1749 0.6170 0.1858 -0.3396 6720
(0.003) (0.984) (0.571) (0.034) (0.055) (0.049) (0.166)

Note: The table reports average estimates and average standard errors (in parentheses)
from 1000 simulated samples.

7. CONCLUSIONS

We show that in 2SLS estimation of linear social network models, measurement errors in
the network can have no impact on estimation and inference of structural parameters if
the magnitude of measurement errors in the adjacency matrix grows sufficiently slowly
with the sample size. These results hold even if the measurement errors are correlated with
model errors, covariates, and outcomes. A useful agenda for future work is to investigate
whether similar results hold for more general network models.
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APPENDIX A: PROOFS OF RESULTS

For a generic matrix A, let A(i), A[k] denote its i-th row and k-th column respectively;
and Aij denote its (i, j)-th component, so that A(i)ι is the sum of the i-th row in A. Let
∆∗

n ≡ H∗
n −G∗

n.
We present the proof for the case where Gn, Hn are row-normalization of G∗

n, H
∗
n

respectively. The proof for the other case with no row-normalization (i.e., Gn = G∗
n and

Hn = H∗
n) follows from almost identical arguments, only with ∆n replaced by ∆∗

n in
Lemma A1, A2 below and in the proofs of Propositions 3.1 and 3.2. So, we exclude the
case with no row-normalization to economize space here.
In this case with row normalization, we can write ∆n as:

Hn −Gn

= diag
{(

1
G∗

n,(1)
ιn
, ..., 1

G∗
n,(n)

ιn

)}
∆∗

n

+diag
{(

1
H∗

n,(1)
ιn

− 1
G∗

n,(1)
ιn
, ..., 1

H∗
n,(n)

ιn
− 1

G∗
n,(n)

ιn

)}
H∗

n.
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The following two lemmas are useful for the proofs. (In what follows, we suppress the
subscript n in Hn, Gn, H

∗
n, G

∗
n to simplify notation.)

Lemma A1. Let an, bn be random vectors in Rn. Suppose there exist constants M1,M2 <
∞ such that Pr{supi≤n |an,i| ≤M1} = 1 and Pr{supj≤nE (|bn,j ||∆n) ≤M2} = 1 for all

n. Then 1
na

′
n∆nbn = Op(n

s−1) under Assumption 3.1.

Proof. (of Lemma A1) From the triangle inequality,

E
(∑

i

∑
j
|∆n,ij |

)
= E

(∑
i

∑
j

∣∣∣∣ 1
G∗

(i)
ιn
∆∗

n,ij +
(G∗

(i)−H∗
(i))ιn(

G∗
(i)

ιn
)(

H∗
(i)

ιn
)H∗

ij

∣∣∣∣)
≤ E

[∑
i

∑
j

(
1

G∗
(i)

ιn

∣∣∆∗
n,ij

∣∣+ 1(
G∗

(i)
ιn

)(
H∗

(i)
ιn

) ∣∣∣(G∗
(i) −H∗

(i)

)
ιn

∣∣∣×H∗
ij

)]
≤ E

[∑
i

(
1

G∗
(i)

ιn

∑
j

∣∣∆∗
n,ij

∣∣+ 1
G∗

(i)
ιn

∑
j

∣∣∆∗
n,ij

∣∣)] = O(ns),

Furthermore,

E
(
| 1na

′
n∆nbn|

)
≤ 1

nE
[
supi,j E (|an,ibn,j ||∆n) ·

(∑
i

∑
j
|∆n,ij |

)]
= O(ns−1).

This proves the claim in the lemma. □

Lemma A2. Under Assumption 3.2, supi≤n |Viq| = O(1) and supi≤n V
2
iq = O(1) for

q = 1, ...,K, and there exists constant M∗ <∞ such that Pr{supiE(|yi||∆n) ≤M∗} = 1
for all n.

Proof. (of Lemma A2) Note

sup
i≤n

([
G2

(i)X[q]

]2)
≤
(
sup
i≤n

∑
k
|Gik|

)2(
sup
k≤n

∑
j
|Gkj |

)2(
sup
j≤n

x2jq

)
= O(1).

It follows that supi V
2
iq = O(1). By Liapounov’s Inequality, supi V

2
iq = O(1) implies

supi |Viq| = O(1) for all q = 1, ...,K.
It then follows from reduced form for Yn that

sup
i
E(|yi||∆n) = sup

i
E
(∣∣∣∑

j
(S−1

n )ij

(
α0 + x′jβ0 +

∑
k
Gjkx

′
kγ0 + εj

)∣∣∣∣∣∣∆n

)
≤ sup

i

[∑
j
(S−1

n )ij

]
× sup

j
E
(
|α0|+ |x′jβ0|+

∑
k
|Gjk| × |x′kγ0|+ |εj |

∣∣∣∆n

)
.

Hence, there exists some constant M∗ <∞ with Pr{supiE(|yi||∆n) ≤M∗} = 1. □

Proof. (of Proposition 3.1) Recall

θ̂ − θ0 =

 R̃′
nṼn
n

(
Ṽ ′
nṼn
n

)−1
Ṽ ′
nR̃n

n

−1

R̃′
nṼn
n

(
Ṽ ′
nṼn
n

)−1
Ṽ ′
nϵ̃n
n

, (A.1)
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where

1

n
Ṽ ′
nR̃n =

1

n
V ′
nRn +

1

n
V ′
n(0,∆nYn, 0,∆nXn)

+
1

n
(0, (Gn∆n +∆nGn +∆2

n)Xn, 0,∆nXn)
′Rn

+
1

n
(0, (Gn∆n +∆nGn +∆2

n)Xn, 0,∆nXn)
′(0,∆nYn, 0,∆nXn),

and

1

n
Ṽ ′
nṼn

=
1

n
V ′
nVn +

1

n
V ′
n(0, (Gn∆n +∆nGn +∆2

n)Xn, 0,∆nXn)

+
1

n
(0, (Gn∆n +∆nGn +∆2

n)Xn, 0,∆nXn)
′Vn

+
1

n
(0, (Gn∆n +∆nGn +∆2

n)Xn, 0,∆nXn)
′(0, (Gn∆n +∆nGn +∆2

n)Xn, 0,∆nXn),

and

1

n
Ṽ ′
nϵ̃n =

1

n
V ′
nϵn − 1

n
λ0V

′
n∆nYn − 1

n
V ′
n∆nXnγ0 (A.2)

+
1

n
(0, (Gn∆n +∆nGn +∆2

n)Xn, 0,∆nXn)
′(ϵn − λ0∆nYn −∆nXnγ0).

Due to Assumption 3.2 and Lemma A2, supi ViV
′
i = O(1). Thus, Lemma A2 implies

that Vn as well as Xnγ0 satisfy the dominance conditions on an in Lemma A1. Moreover,
Lemma A2 implies Yn and ϵn satisfy the dominance conditions on bn in Lemma A1.
Under our maintained conditions, 1

n Ṽ
′
nR̃n and 1

n Ṽ
′
nṼn are both Op(1). Furthermore, the

second to the fourth terms on the RHS of (A.2) can all be expressed as 1
na

′
n∆nbn in

Lemma A1, and hence are Op(n
s−1). Because 1

nV
′
nϵn = Op(n

−1/2), it then follows that
1
n Ṽ

′
nϵ̃n = Op(n

−1/2 ∨ ns−1). □

Proof. (of Proposition 3.2) As

√
n(θ̂ − θ0) =

[
R′

nVn
n

(
V ′
nVn
n

)−1
V ′
nRn

n

]−1
R′

nVn
n

(
V ′
nVn
n

)−1
V ′
nϵn√
n

+Op(n
s−1/2),

when s < 1/2,
√
n(θ̂ − θ0) has the same asymptotic distribution as the 2SLS estimator

using true network links.
Consider the asymptotic variance Ω. Let Σn be the diagonal matrix of the error vari-

ance, i.e., Σii = E(ε2i ). We have Ω = A−1BA−1, where

A = p lim
R′

nVn
n

(
V ′
nVn
n

)−1
V ′
nRn

n
;

B = p lim
R′

nVn
n

(
V ′
nVn
n

)−1(
1

n
V ′
nΣnVn

)(
V ′
nVn
n

)−1
V ′
nRn

n
.

Using Lemma A1, we can show that

Â = A+Op(n
s−1)
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and

B̂ = B +
R′

nVn
n

(
V ′
nVn
n

)−1(
1

n
Ṽ ′
nΣ̂nṼn − 1

n
V ′
nΣnVn

)(
V ′
nVn
n

)−1
V ′
nRn

n
+Op(n

s−1).

Then, what left is to show that from the fact that 1
n Ṽ

′
nΣ̂nṼn − 1

nV
′
nΣnVn is op(1). As

1

n
Ṽ ′
nΣ̂nṼn − 1

n
V ′
nΣnVn =

1

n
V ′
n

(
Σ̂n − Σn

)
Vn +Op(n

s−1),

and the first term on the RHS is Op(n
−1/2 ∨ ns−1) because

1

n
V ′
n

(
Σ̂n − Σn

)
Vn

=
1

n

n∑
i=1

(
(Yn − R̃nθ̂)(i)]

2 − E(ε2i )
)
viv

′
i

=
1

n

n∑
i=1

viv
′
i[ε

2
i − E(ε2i )] +

1

n

n∑
i=1

viv
′
i

(
[R̃i(θ0 − θ̂)]2 + [(λ0∆nYn +∆nXnγ0)(i)]

2
)

+
2

n

n∑
i=1

viv
′
iR̃i(θ0 − θ̂)εi −

2

n

n∑
i=1

viv
′
i[R̃i(θ0 − θ̂) + εi](λ0∆nYn +∆nXnγ0)(i)

= Op(n
−1/2) +Op(θ0 − θ̂) +Op(n

s−1) = Op(n
−1/2 ∨ ns−1).

Together, we have Â−1B̂Â−1 −A−1BA−1 = Op(n
−1/2 ∨ ns−1) = op(1). □


