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Abstract

We propose an adjusted 2SLS estimator for social network models when some exist-

ing network links are missing from the sample (due, e.g., to recall errors by survey

respondents, or lapses in data input). In the feasible structural form, missing links

make all covariates endogenous and add a new source of correlation between the

structural errors and endogenous peer outcomes (in addition to simultaneity), thus

invalidating conventional estimators used in the literature. We resolve these issues by

rescaling peer outcomes with estimates of missing rates and constructing instruments

that exploit properties of the noisy network measures. We apply our method to study

peer effects in household decisions to participate in a microfinance program in Indian

villages. We find that ignoring missing links and applying conventional instruments

would result in a sizeable upward bias in peer effect estimates.
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1 Introduction

In many social and economic environments, an individual’s behavior or outcome (such as

a consumption choice or a test score) depends not only on his or her own characteristics,

but also on the behavior and characteristics of other individuals. Call such dependence

between two individuals a link. A social network consists of a group of individuals, some

of whom are linked to others. The econometrics literature on social networks has largely

focused on disentangling various channels of social effects based on observed outcomes

and characteristics of network members. These include identifying the effects on each

individual’s outcome of (i) the individual’s own characteristics (individual effects), (ii) the

characteristics of people linked to the individual (contextual effects), and (iii) the outcomes

of people linked to the individual (peer effects). See Blume et al. (2011) and Graham (2020)

for extensive surveys about identifying such effects in social network models.

A popular approach for estimating social network models is to use two-stage least

squares (2SLS). This requires researchers to construct instruments for the endogenous peer

outcomes, using perfect knowledge of the network structure, as given by the adjacency ma-

trix (i.e., the matrix that lists all links in the network). See, for example, Bramoullé et al.

(2009), Kelejian and Prucha (1998), Lee (2007), and Lin (2010). In practice, samples of

network links are often collected from survey responses. Such samples may suffer from an

issue of missing links, due, e.g., to recall errors or misunderstandings by survey respondents,

or lapses in data input. These missing links can be viewed as one-sided misclassification

errors. An existing link between two individuals may be misclassified as non-existent, but

the sample does not erroneously impute links between those who are not linked.

Missing links in the sample pose major methodological challenges for estimators like

2SLS. To see this, consider a data-generating process (DGP) from which a large number

of independent networks (i.e., groups) are drawn. Each group has n individual members.

The issues we raise and the solutions we propose also apply to other contexts, such as a

large number of independent networks with different sizes or a single growing network, but

are easiest to illustrate in the context of many independent, identically sized groups.

Suppose that in each group, a vector of individual outcomes y ∈ Rn is determined by a
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structural model:

y = λGy +Xβ + ε, where E(ε|X,G) = 0.

In this model, the adjacency matrix, G, is an n-by-n matrix of dummy variables that

describes the group’s network: the element in row j and column k of G equals one if

individual j is linked to member k, and zero otherwise.1 Here X is an n-by-K matrix of

exogenous covariates, and ε is an n-vector of structural errors. The random arrays y, G,

X, and ε all vary across the groups in the sample, while the coefficients λ and β are the

same across groups. We drop group subscripts for clarity.

For simplicity we have for now omitted contextual effects, i.e., a term defined as GXγ.

We also omit group-level fixed effects for now. Extensions of our results that deal with

these are provided later.

The regressors in the model are GY and X. While X is exogenous, the regressors GY

are correlated with ε. The issue of simultaneity arises here, because any one individual’s

outcome depends on, and is determined simultaneously with, the outcomes of other group

peers. A simple estimator of the peer effect λ and individual effects β that deals with this

simultaneity problem is 2SLS, using GX or G2X as instruments for GY , as in Bramoullé

et al. (2009).2

But now suppose that, in each group, a researcher does not observe G perfectly, but

instead observes a noisy measure H, which differs from G by randomly missing some actual

existing links while correctly reporting others. The goal now is to estimate λ and β from

the “feasible” structural form:

y = λHy +Xβ + u, (1)

where u ≡ [ε+ λ(G−H)y] is a vector of composite errors.

The missing links in H aggravate endogeneity issues in (1) in two important ways. First,

they lead to correlation between X and u through λ(G − H)y, a component in u that is

1This is a “local-aggregate” network model, where the endogenous effect depends on the aggregate
outcome of those linked to an individual. It differs from a “local-average” network model, where the
endogenous effect is represented by the average outcome of those linked peers.

2If the model included contextual effects GXγ in its structural form, then G2X could be used as
instruments for Gy, otherwise use of GX as instruments suffices.
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due to the measurement error in the adjacency matrix. As a result, unlike using GX or

G2X as instruments when G is perfectly reported in the sample, 2SLS estimates based on

the feasible instruments HX or H2X that are constructed from the noisy network measure

would be inconsistent due to a failure of instrument exogeneity.

Second, these missing links cause an additional source of endogeneity in Hy. Like Gy,

the feasible Hy is correlated with the model error ε due to simultaneity. But in addition,

Hy is also correlated with u through the measurement errors in λ(G−H)y. For all these

reasons, standard 2SLS estimators of this model become inconsistent in the presence of

missing links.3

In this paper, we introduce an adjusted-2SLS estimator, which resolves these challenges

and consistently estimates (λ, β) using alternative valid instruments constructed from H

despite the missing links. We first introduce the main idea for a benchmark case, where

actual links in G are missing randomly from H in the sample at an unknown rate p ∈ (0, 1).

Later, we extend our method to allow the missing rates p(X) to depend on covariates.

Our method is based on a series of new insights that have not been explored in the

literature. First, we observe that by rescaling the noisy measure of peer outcomes Hy with

the inverse probability of reporting correctly 1/(1 − p), we restore the exogeneity of X in

a rescaled structural form. Formally, this means if we reparametrize (1) as

y = λ∗Hy +Xβ + v with λ∗ ≡ λ/(1− p), (2)

then the reparametrized composite errors v ≡ ε+(λG−λ∗H)y satisfy E(v|X,G) = 0. This

holds regardless of how the actual network G is formed, as long as E(ε|X,G) = 0.

Second, despite the restored exogeneity of X in (2), conventional instruments such as

HX or H2X remain invalid, because the reparametrized errors v depend on H. To address

this issue, we provide alternative functions of H and X that are valid instruments. To give

an example, we show that if conditional on (G,X), the observed H is an unsymmetrized

noisy measure with links missing independently, then H ′X is uncorrelated with v (where H ′

3While we focus on the 2SLS estimator in this paper, the same arguments apply to show that conven-
tional maximum likelihood, and the generalized least squares estimators based on (1) are also inconsistent.
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denotes the transpose of H). This result holds regardless of whether the actual adjacency

matrix G is known to be symmetric (i.e., with all links being undirected) or asymmetric

(i.e., consisting of directed links). Therefore, we can use H ′X as valid instruments in an

adjusted-2SLS where peer outcomes are rescaled by 1/(1−p). To the best of our knowledge,

no other paper in the literature has proposed this use of H ′X as instruments.

For a different scenario where the noisy measures H’s are symmetrized while the actual

G is known to be symmetric with all links being undirected, we provide an alternative

way to construct valid instruments, based on observing two different H matrices.4 For

example, in our empirical application, for an undirected link between two households A

and B, we observe two proxy measures of the same link: whether A visited B, and whether

B visited A. This yields two different observed H matrices corresponding to the same true

undirected link in the G matrix. Observing these two H matrices allows us to construct

valid instruments. This method of constructing instruments from multiple noisy measures

can also be applied when H are unsymmetrized, regardless of whether the actual G is

known to be symmetric or not.

Third, under either of these two scenarios above that permit construction of valid in-

struments (that is, the sample reports either a single unsymmetrized noisy measure H,

or two independent measures that may or may not be symmetrized), we provide simple

methods to identify and estimate the unknown missing rate p.5

Building on these insights, we construct an adjusted 2SLS estimator for (λ, β), and

provide its limiting distribution as the number of groups grows to infinity. This estimator

essentially applies 2SLS to the rescaled peer outcomes Hy/(1−p) in (2), using our proposed

new instruments and a sample analog estimator for the missing rate p. The estimator is

easy to implement, and we demonstrate good finite-sample performance in monte carlo

simulation.

We then generalize the model and our estimator in several directions. We show how

4We also show yet another way to construct valid instruments is to use nonlinear functions of X.
5The approach we take in this step differs from, and is simpler than, other papers that use multiple

measures to deal with misclassification in discrete explanatory variables (e.g. Mahajan (2006), Lewbel
(2007), and Hu (2008)). This is because, for implementing our adjusted-2SLS, it is only necessary to
estimate the missing rate p, rather than the distribution of outcomes conditional on the actual G.
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to include contextual effects (a term defined as GXγ) as well as group-level fixed effects

into the structural form in (1). We also allow the missing rates p to be heterogeneous and

depend on individual covariates in X.

Furthermore, we extend our method to the case of a single large network. In this case,

the asymptotic experiment is to increase the number of individuals on a single network,

rather than increasing the number of small groups with fixed sizes. For this extension

we propose two possible settings where some form of weak dependence exists between the

outcomes of individuals who are “sufficiently far” from each other, either in the sense of not

being in the same group (Section 6.1) or in terms of a latent distance metric (Section 6.2).

In either case, we show that under such weak dependence our adjusted 2SLS estimator,

when pooled over individuals in the sample, still converges to the intended estimand.

Finally, we apply our method to estimate peer effects in household decisions to partici-

pate in a microfinance program in Indian villages, using data from Banerjee et al. (2013).

We match the individual survey to the household survey there, yielding a sample of 4134

households from 43 villages in South India. The parameter of interest is the peer (endorse-

ment) effect, which reflects how a household’s decision is influenced by the microfinance

program participation of other households to which it is linked. Survey information about

visits between the households provides two symmetrized noisy measures of undirected links

(i.e., two symmetric H matrices). We estimate missing rates in each of these two measures

using our methodology, and then we apply these rates in our adjusted-2SLS procedure to

estimate the endorsement peer effects.

We find that participation by another linked household increases a household’s own

participation rate by around 4.6%. This effect is economically significant, compared to the

average participation rate of 18.2% in the sample. We also find that ignoring the missing

links in the noisy measures and applying conventional 2SLS estimation results in a sizeable

upward bias in the estimates of these peer effects.

Roadmap. Section 2 reviews the related literature, and explains our contribution in its

context. Section 3 specifies the model, and illustrates the main ideas in a benchmark

model with independent and identical missing rates. Section 4 defines an analog estimator
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for missing rates, and provides our adjusted-2SLS estimator for social effects. Section 5

extends the method to more general settings with contextual effects, heterogeneous missing

rates, or group fixed effects. Section 6 shows how our estimator works when the sample

consists of a single, large network. Section 7 presents monte carlo simulation results.

Section 8 applies our method to analyze peer effects in microfinance participation in India.

Proofs are collected in the Appendix.

2 Related Literature

Models with misclassified binary or discrete variables have been studied extensively in

the econometrics literature. Aigner et al. (1973), Klepper (1988), Bollinger (1996), and

Molinari (2008) point-identify or set-identify such models using various restrictions on the

misclassification rates; Mahajan (2006), Lewbel (2007), and Hu (2008) exploit exogenous

instruments to deal with misclassified explanatory variables.

Estimation of peer effects in social networks with measurement errors in the links is an

increasingly important topic. Shalizi and Rinaldo (2013) note the challenge of dealing with

missing network links in Random Graph Models. Advani and Malde (2018) show that even

a relatively low misreporting rate can lead to large bias in causal effect estimates. Butts

(2003) proposes a hierarchical Bayesian model to infer social structure in the presence of

measurement errors. Chandrasekhar and Lewis (2011) show how egocentrically sampled

network data can be used to predict the full network in a graphical reconstruction process.

Liu (2013a) shows that when the adjacency matrix is not row-normalized, instrumental

variable estimators based on an out-degree distribution can be valid.

Goldsmith-Pinkham and Imbens (2013) examine network endogeneity and investigate

simultaneously alternative definitions of links and the possibility of peer effects arising

through multiple networks. They explicitly model network formation, with estimation

based on maximum likelihood, using a Bayesian approach for computational convenience

and feasibility. Hardy et al. (2019) estimate treatment effects on a social network when the

reported links are a noisy representation of true spillover pathways. They use a mixture

model that accounts for missing links as unobserved network heterogeneity, and estimate
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it using an Expectation-Maximization algorithm. This approach requires a parametric

model of how links are determined and treatment is assigned, and requires enumerating

the likelihood conditional on all possible treatment exposures (which in turn depends on

the latent unobserved network). Auerbach (2022) studies a network model where links are

correctly measured but both peer and contextual effects interact with unobserved individual

heterogeneity that affects link formation.

In contrast with these papers, we focus on social effect parameters in a linear social

network model, and exploit implications of randomly missing links for identification. Our

method does not require modeling the formation of actual links. Our estimator is essentially

a rescaled 2SLS, which has closed form and is easy to compute.

Boucher and Houndetoungan (2020) estimate peer effects when the social networks in

the sample are subject to measurement issues, such as missing or misclassified links. Their

method can be applied when the researcher only has access to aggregated relational data,

but assumes the researcher knows, or has a consistent estimator of, the distribution of the

actual network. They construct instruments by drawing from this distribution, and use

2SLS to estimate the peer effects. In comparison, the method we propose does not require

such prior knowledge or estimates of network distribution.

Griffith (2021) studies the case where links are censored in the sample (e.g., when each

individual is restricted to naming 5 or fewer links with other people, even if the actual

number of people the individual is linked with is larger). Griffith (2021) analytically char-

acterizes the bias in a reduced-form regression (i.e., when the outcome vector y is regressed

on the exogenous variables X and GX). Moreover, for a model with no endogenous peer

effect (λ = 0), Griffith (2021) shows that the bias can be consistently estimated under

an order invariance condition, i.e., the covariance of characteristics of those linked to an

individual is invariant to the order in which those links are reported or censored. This

condition mitigates the issue of endogenous selection of uncensored links, and in this sense

is analogous to our assumption of randomly missing links. In comparison, we consider

different settings where links are missing at random in a model with a non-zero peer effect

λ ̸= 0. (This is later generalized to the case with heterogeneous missing rates.) We show

that the 2SLS estimand in this case contains a simple augmentation bias in peer effects
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(in the sense of converging to λ/(1 − p), with p being the missing rate), and no bias in

other individual effects. Bias correction in our case is immediate once the missing rate is

estimated using a simple approach that we provide.

Liu (2013b) estimates a social network model when the data consists of a subset of

individuals sampled randomly from a larger group in the population. In his setting, the

links and outcomes among this sampled subset of group members are perfectly measured

while those of all others are not reported in the data.6 In comparison, we do not study the

inference of sampled networks; instead, we let the group memberships be fixed and known,

and allow every individual in the sample to have randomly missing links. As noted above,

this imperfect measure of links leads to failure of conventional 2SLS in our setting.

3 Model and Identification

Consider a DGP from which a large number of small, independent networks (groups) are

drawn. Each group s consists of ns individual members, with ns ≥ 3 being finite integers.

In Section 3-5, we identify and estimate a linear social network model with missing links

in the data as the number of groups in the sample approaches infinity. Later we consider

the extension to a single growing network.

To simplify exposition, let the group sizes ns = n be fixed across groups s = 1, ..., S.

This allows us to drop the group subscript s while presenting our identification argument.

We will later add back these group subscripts and allow for variation in group sizes when

we define our estimator in Section 4.

The structural form for the n-vector of individual outcomes y in each group is:

y = λGy +Xβ + ε, (3)

where the peer effect λ and the direct effects β are constant parameters of interest, X is

an n-by-K matrix of individual- or group-level explanatory variables, and G ∈ {0, 1}n×n is

a network (adjacency) matrix with its (i, j)-th entry Gij = 1 if an individual member i is

6In our notation, this means some rows in G, as well as their corresponding rows in Y and X, are not
included in the data due to random sampling.

9



linked to another member j, and Gij = 0 otherwise. The matrix G may be asymmetric with

directed links (i.e., Gij ̸= Gji for some i ̸= j), or symmetric with all links being undirected

(i.e., Gij = Gji for all i ̸= j almost surely).

Note that, like y, X, and ε, the adjacency matrix G varies by group, and so it too has an

s subscript that has been dropped for now. Only the coefficients λ and β are constants that

do not vary across groups. Assume that (I − λG) is invertible almost surely. A sufficient

condition for this is that ||λG|| < 1 for any matrix norm || · ||. Solving equation (3) for y

gives the reduced form for outcomes:

y =M(Xβ + ε), where M ≡ (I − λG)−1. (4)

For each group, the sample only reports a noisy measure of the adjacency matrix G,

with randomly missing links. Denote this noisy measure by H ∈ {0, 1}n×n. Let Gii = 0

and Hii = 0 by convention.

3.1 Assumptions

We maintain the following conditions on the noisy measure H throughout Section 3:

(A1) E(Hij|G,X) = E(Hij|Gij, X) for all i and j;

(A2) E(Hij|Gij = 1, X) = 1− p and E(Hij|Gij = 0, X) = 0 for all i ̸= j;

(A3) E(ε|X,G,H) = 0.

Condition (A1) states that the incidence of missing a link between two individual members

i and j is conditionally independent from the state of links involving other individuals

l /∈ {i, j}. Condition (A2) specifies that misclassification of links is one-sided in that

existent links are missing from the sample at a rate of p ∈ (0, 1) while non-existent links

are never mistakenly coded as existent. Condition (A3) rules out endogeneity in link

formation, by assuming that (X,G,H) are exogenous to the structural error ε.

Conditions (A1) and (A2) hold jointly in two scenarios that are common in practice. In
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the first scenario, which we refer to as “unsymmetrized measures”, each (i, j)-th entry in

H is an independent measure (e.g., a survey response from an individual i about whether

a link with j exists) of the corresponding (i, j)-th entry in G. An adjacency measure H

constructed this way is flexible in that it allows the researcher to remain agnostic about

whether the actual adjacency matrix G is symmetric or not. (Of course, this is also an

intuitive way to construct H when the actual G is known to have directed links.) In this

scenario, if these measures randomly miss existing links at a rate p, but never erroneously

impute links between those who are not linked, then (A1) and (A2) are satisfied with a

missing link rate p. To reiterate, (A1) and (A2) hold in this case, regardless of whether the

actual G is symmetric or not.

In the second scenario, which we refer to as “symmetrized measures”, the actual G is

known to be symmetric with all links being undirected, and the researcher therefore chooses

to symmetrize H using independent measures of entries in G. For example, the researcher

may ask two individuals i and j whether they share an undirected link, and construct a

symmetrized measure by setting two entries Hij and Hji both to 1 if either i or j responds

positively, and both to 0 otherwise. Again, suppose the responses from i or j independently

miss an existing undirected link between them at a rate of φ > 0 (say, due to idiosyncratic

recall errors) but never erroneously report one if no such link exists between i and j in G.

In this case, (A1) and (A2) hold with each entry in Hij having a missing rate of p = φ2.

On the other hand, the conditions (A1) and (A2) rule out another (third, empirically

much less plausible) scenario, in which the actual G is asymmetric with directed links but

researchers mistakenly impose symmetrized measure H as in the second scenario above.

In this case, (A1) fails because E(Hij|Gij = 1, Gji = 1) = 1 − φ2 while E(Hij|Gij =

1, Gji = 0) = 1 − φ, and (A2) fails because E(Hij|Gij = 0) = (1 − φ)q0 ̸= 0 with

q0 ≡ E(Gji|Gij = 0) > 0.

A clear advantage of the method we propose in this paper is that it allows researchers

to consistently estimate social effects while being agnostic about whether the actual links

in G are directed or not. The method only requires that the noisy measures H satisfy

(A1)-(A3), which, as explained above, do not immediately impose the (a)symmetry of G

or H. We therefore recommend a simple guideline for practitioners collecting link data: if
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a researcher is unsure about whether the actual links in G are directed or undirected, then

a safe approach is to construct an unsymmetrized measure H as in the first scenario, and

apply our method in this paper to deal with the possibility of missing links.

It is also important to note that Assumptions (A1)-(A3) do not specify how the actual

links in G are formed. These conditions do not impose any known information about

the actual adjacency matrix, except for its exogeneity in (A3). Nor do they impose any

structure that can be used to derive a conditional likelihood for the actual adjacency matrix,

that is, Pr{G|H,X} = Pr(H|G,X)Pr(G|X)∫
Pr(H|G,X)dF (G|X)

. Constructing such a conditional likelihood would

require specifying the likelihood of the actual network Pr{G|X}, which we avoid in this

paper. Our method is therefore qualitatively different from existing alternative methods,

which either use graphical reconstructions such as Chandrasekhar and Lewis (2011), or

require knowledge of the distribution of actual adjacency matrix such as Boucher and

Houndetoungan (2020).

Under (A1) and (A2), we can write:

E(H|G,X) = (1− p)G. (5)

In the next subsection we show how this property, along with condition (A3), leads to a

simple interpretation of the 2SLS estimand despite missing links.

3.2 Augmentation bias in two-stage least squares

In place of equation (1), we write a reparametrized structural form using H instead of G:

y = λ∗Hy +Xβ + ε+ (λG− λ∗H) y︸ ︷︷ ︸
≡v

, where λ∗ ≡ λ/(1− p). (6)

Note the peer effect λ is replaced with a rescaled version λ∗ in (6). Lemma 1 shows how

this replacement restores the exogeneity of X with the new composite error v in (6).

Lemma 1. Under (A1), (A2), and (A3), E(v|X,G) = 0.

Lemma 1 may seem rather surprising ex ante, because one would expect (X,G) to be

12



generically correlated with the composite error v which depends on y. The intuition for

this result is as follows. Once we condition on the actual network G and explanatory vari-

ables in X, the randomness in individual outcomes y is solely due to the actual structural

errors ε, which are uncorrelated with both X and (H,G) under (A3). As a result, any

potential correlation between v and (X,G) could only be due to the reparametrized mea-

surement error λG− λ∗H. But equation (5) implies that λG− λ∗H, and consequently the

reparametrized error v, are mean independent from (X,G).

As discussed earlier, even with Lemma 1 establishing exogeneity of X in (6) by replacing

λ with λ∗, there is still endogeneity in the term Hy because E[(Hy)′ v] ̸= 0 in general.7 We

therefore next investigate the estimand from 2SLS given appropriate instruments for Hy.

Based on Lemma 1, nonlinear functions of X can serve as instruments, if the usual rank

(instrument relevance) condition is satisfied. However, nonlinear functions of X might not

be relevant, or might be weak as instruments, since the structural model is linear in X.

To deal with this possibility, we later show in Section 3.3 and 3.4 that it is also possible

to use the noisy measures H to construct instruments just from linear functions of X. For

instance, in Section 3.3, we show H ′X can be a valid instrument, meaning E[(H ′X)′ v] = 0,

when H consists of directed links as in the case with unsymmetrized measures.

More generally, let ζ be a generic n-by-L matrix of instruments for Hy. Denote R ≡

(Hy,X), Z ≡ (ζ,X) so that E(R′v) ̸= 0 while E(Z ′v) = 0. Assume instruments satisfy

the following rank condition:

(IV-R) E(Z ′R) and E(Z ′Z) have full rank.

Let Π ≡ [E(Z ′Z)]−1E(Z ′R). By (6) and Lemma 1,

Π′E(Z ′y) = Π′E(Z ′R)(λ∗, β′)′ +Π′E(Z ′v)

⇒ (λ∗, β′)
′

= [Π′E(Z ′R)]
−1

[Π′E(Z ′y)] . (7)

7To see this, note E(H ′G|G,X) = (1− p)G′G under (A1) and (A2), but E(H ′H|G,X) ̸= (1− p)2G′G
under the same conditions. This is because the i-th diagonal entry in H ′H is

∑
k H

2
ki =

∑
k Hki

while its (i, j)-th off-diagonal entry is
∑

k HkiHkj . This inequality holds even under a stronger condi-
tion (A4) introduced in Section 3.3. It then follows from (A3) and the law of iterated expectation that
λ∗E (y′H ′Hy) ̸= λE(y′H ′Gy) in general.
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We formalize this result in the next proposition.

Proposition 1. Suppose (A1), (A2), and (A3) hold, and that (IV-R) holds for instruments

Z. The two-stage least-squares estimand using Z for (6) is then (λ∗, β′)′.

Proposition 1 shows that when links are missing at random in the sample, 2SLS esti-

mation using valid instruments leads to augmentation bias in the peer effect, because 2SLS

estimates λ∗ instead of λ. To reiterate, this result holds under the maintained conditions,

regardless of whether the actual G is symmetric or not. Intuitively, when links are missing

in the sample, their contribution to peer effects are erroneously attributed to the remaining

observed links, thereby exaggerating the magnitude of peer effects attributed to the ob-

served links. In contrast to peer effects, the individual effects β are consistently estimated

by 2SLS (with valid instruments) despite missing links.

Based on Proposition 1, we have two main requirements for estimating the model. First,

we need to construct valid instruments for 2SLS. Lemma 1 implies nonlinear functions of

regressors ζ(X) may serve as instruments, provided they satisfy the rank condition in (IV-

R) either through the reduced form of y or their correlation with the link formation in G.

Alternatively, instruments could also be constructed from functions of the noisy network

measureH (such as ζ(X,H) = H ′X whenH is unsymmetrized), as we show later in Section

3.3 and 3.4. Second, we need to estimate the missing rate p in order to convert the 2SLS

estimate of λ∗ into an estimate of λ. We address this question in Section 3.5.

3.3 Constructing instruments from a noisy network measure

We return to the question about how to construct instruments using a noisy network

measure H. Assume:

(A4) Conditional on (G,X), Hij and Hkl are independent whenever (i, j) ̸= (k, l).

This condition states the incidences of missing two different links are independent condi-

tional on actual link status. Note that if Gij = Gkl = 0, then (A2) implies Hij and Hkl are

both fixed at 0, which is consistent with (A4).
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Condition (A4) does not restrict whether the actual network G is symmetric or not.

For example, (A4) is consistent with H being an unsymmetrized measure of G, which is

defined in the first scenario under (A1)-(A2) in Section 3.1). In this case, (A4) holds when

Hij and Hji are independent measures of Gij and Gji respectively, regardless of whether

the actual G is symmetric or not.

On the other hand, (A4) does not hold when H is a symmetrized measure of an actual

G that is known to be symmetric with undirected links. This is the second scenario under

(A1)-(A2) in Section 3.1. In this case, H and G are both symmetric with (Hij, Gij) =

(Hji, Gji) for all i ̸= j almost surely. It then follows that E(HikHki|G,X) = (1 − p)Gik,

which differs from E(Hij|G,X)E(Hji|G,X) = (1 − p)2Gik. This violates (A4). To deal

with this case of symmetrized measures when the actual G is symmetric, we later give an

alternative method for constructing instruments in Section 3.4. The method requires that

the sample contain multiple symmetrized measures H(1), H(2).

Under (A4), we can construct instruments using H and X as follows.

Proposition 2. Suppose (A1), (A2), (A3), and (A4) hold. Then E(Z ′v) = 0, where

Z ≡ (H ′X,X).

There is a simple interpretation of the instruments H ′X: the i-th component (row) of

H ′X is the sum of characteristics of all individuals who report links with i in the sample.

Recall that GX would be valid instruments for Gy if G were perfectly observed in

the sample. Therefore, one may wonder why we use H ′X instead of HX as instruments

here. To understand this, note the composite error v in (6) contains the reparametrized

measurement error (λG− λ∗H), and so in particular contains H. Hence, even under (A1)-

(A4), HX is correlated with this reparametrized measurement error in v through H. In

contrast, using a transpose of H in H ′X removes such correlation, because under (A4) the

events of missing links between different pairs of individuals are conditionally independent.

Therefore, H ′X satisfies instrument exogeneity while HX does not.

To apply 2SLS, the instruments need to satisfy the rank conditions in (IV-R). The next

proposition specifies sufficient conditions for H ′X to satisfy (IV-R). These conditions are

primitive, i.e., in terms of moments of functions of (X,G).
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Proposition 3. Suppose (A1), (A2), (A3), and (A4) hold, and E(X ′X) is non-singular.

Then (IV-R) holds for Z ≡ (H ′X,X) if

 E(X ′X) E(X ′M−1X)

E(X ′MX) E(X ′X)

 and

 E(X ′G2X) E(X ′GX)

E(X ′GX) E(X ′X)

 are non-singular.

(8)

The rank conditions in (8) hold generically for random link formation models. Our

simulations show that these conditions hold even for very restrictive cases where links are

i.i.d. Bernoulli and independent from X. Violations of these conditions in (8) do exist in

special cases. One such example is the linear-in-means social interactions model where Gk

is proportional to a square matrix of ones for all positive integers k. It is worth noting that

such an example of linear-in-means model also violates the rank condition for identifying

social effects in Bramoullé et al. (2009), which requires I, G, andG2 be linearly independent.

3.4 Instruments based on multiple symmetric measures

The method for constructing instruments in Section 3.3 assumes the sample reports unsym-

metrized network measure H. In this section, we provide an alternative, complementary

method for constructing instruments when the sample provides two (or more) symmetrized

measures of an actual G that is known to be symmetric with all links being undirected.

For example, Banerjee et al. (2013) provide multiple measures of undirected links be-

tween households in rural villages across the State of Karnataka, India. For each pair

of households, the survey asks which households you visited, and which ones visited you.

Banerjee et al. (2013) symmetrize each of these two measures, yielding symmetric matri-

ces we call H(1) and H(2). These two matrices are both measures of the same underlying

symmetric network G. However, as we show later, these two matrices empirically differ

substantially, indicating that they are different noisy measures of G.

Suppose we observe two symmetrized measures of the adjacency matrix, H(1) and H(2),

which satisfy (A1), (A2), (A3), and

(A4’) Conditional on (G,X), H
(1)
ij and H

(2)
kl are independent for all (i, j) and (k, l).

16



These two measures H(1) and H(2) have their own, different missing link rates, denoted

p(1) and p(2) respectively. Condition (A4’) is plausible when these distinct measures are

independently collected and symmetrized, say, using responses from separate surveys.

Using either measure H(1) or H(2), we can construct a feasible structural form. That is,

for t = 1, 2,

y = λ
1−p(t)H

(t)y +Xβ + v(t), where v(t) = ε+ λ
[
G− H(t)

1−p(t)

]
y. (9)

Under (A1)-(A3) and (A4’) and by an argument similar to Proposition 2, we can show that

H(2)X satisfies the condition of instrument exogeneity with regard to v(1):

E
[
(H(2)X)′v(1)

]
= 0.

By a symmetric argument, analogous exogeneity holds for H(1)X and v(2). (See Appendix

A for details.) We can therefore use H(1)X as instruments in equation (9) with t = 2, and

H(2)X as instruments in (9) with t = 1. In Section 4, we discuss how to construct 2SLS

estimators using these multiple, symmetrized network measures.

3.5 Recovering peer effects and missing rates

To remove the augmentation bias and recover the peer effect λ from the 2SLS estimand λ∗,

we need to estimate the unknown missing link rate p. Here we provide two methods for

identifying p in different and complementary cases.

First, consider a case where the sample reports an unsymmetrized noisy measure H,

where the actual G is known to be symmetric with all links being undirected. This is a

special case of the first scenario (of unsymmetrized measures) defined in Section 3.1. For

example, the sample may collect self-reported survey responses about undirected links, with

individual i reporting Hik for k ̸= i and individual j reporting Hjk′ for k
′ ̸= j.

In this case, we can construct a symmetrized measure H̃ with each element defined as

H̃ij = max{Hij, Hji}. Under our assumptions, if the missing link rate for each element in

H is p, then the missing link rate for H̃ will be p2. Let ψ(H) ∈ R denote the average of all
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off-diagonal components in a network measure H. By the implication of randomly missing

links in (5) and the linearity of ψ(·),

E[ψ(H)] = (1− p)E[ψ(G)] and E[ψ(H̃)] = (1− p2)E[ψ(G)].

Hence, with E[ψ(G)] ̸= 0, we can identify the missing rate as p = E[ψ(H̃)]/E[ψ(H)]− 1.

Second, consider another case where the sample reports two independent measures,

H(1) and H(2), with unknown missing rates p(1) and p(2) respectively. These measures could

either be unsymmetrized as in the first scenario in Section 3.1 (where researchers may not

know whether the actual G is symmetric or not), or symmetrized as in the second scenario

in Section 3.1 (where researchers know the actual G are symmetric with undirected links).

In this case, we can construct a third measure with each element defined as H
(3)
ij =

max{H(1)
ij , H

(2)
ij }. The implied missing rate for each element in H(3) is p(3) = p(1)× p(2). By

equation (5) we have

E[H(t)] = (1− p(t))E (G) for t = 1, 2, 3.

By the linearity of ψ, we therefore get E[ψ(H(t))] = (1− p(t))E[ψ(G)]for t = 1, 2, 3. Hence,

with E[ψ(G)] ̸= 0, we can identify the missing rates p(1) and p(2) as:

p(1) =
E[ψ(H(3))]− E[ψ(H(1))]

E[ψ(H(2))]
and p(2) =

E[ψ(H(3))]− E[ψ(H(2))]

E[ψ(H(1))]
.

Once the missing rates are recovered, we can use them to remove the augmentation bias

in the 2SLS estimand in (6). Equivalently, we can use these rates to rescale the endogenous

peer outcomes as Hy/(1− p) so that 2SLS can then estimate (λ, β′)′ consistently.

In each of the two cases above in Section 3.5, the matrix we construct, either H̃ or H(3),

is a more accurate measure of G than the original H or H(1) and H(2) under maintained

assumptions, in the sense of having a lower rate of missing links. However, direct estimation

using these constructed matrices in place of G would still be biased and inconsistent due to

the missing links. The estimators we propose in the next section do not directly use these

constructed matrices (other than to estimate missing rates as above), but the estimators
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do make use of the information involved in such construction. For instance, our estimator

in the second case uses both H(1) and H(2) that were used to construct H(3).

Some remarks about how we use the multiple, noisy network measures in Section 3.4 and

3.5 are in order. There is a broad and growing econometrics literature that uses repeated

noisy measures to estimate nonlinear models with errors in variables, e.g., Li (2002), Chen

et al. (2005) and Hu and Sasaki (2017) or unobserved heterogeneity, e.g., Hu (2008) and

Bonhomme et al. (2016). More recently, Hu and Lin (2018) use repeated measurement

to estimate a binary choice model with misclassification and social interactions. These

papers typically apply mathematical tools such as deconvolution, and eigenvalue or LU

decomposition to the joint distribution of repeated measures.

Unlike these papers, we use the repeated measures in two simple and intuitive steps

that do not require any deconvolution or matrix/spectrum decomposition tools. Our focus

on linear social networks allows us to exploit the identifying power from repeated measures

through a standard 2SLS in Section 3.4. We are also able to apply a simple algebraic

argument to recover the missing rates in Section 3.5. Both steps are constructive, and

yield estimation based on the analog principle.

4 Two-Step Estimation

Section 3.5 provides two ways to recover the missing link rates, based on either observing

a single unsymmetrized measure H, or observing two independent measures H(1), H(2). In

this section, we propose 2SLS estimators for both cases.

Consider a sample of S independent groups, with each group s consisting of ns members.

(Later in Section 6 we consider extensions to a single growing network instead of many

independent groups.) For each group s, the sample reports an ns-by-1 vector of individual

outcomes ys, an ns-by-K matrix of regressors Xs, and either an ns-by-ns unsymmetrized

measure Hs, or two ns-by-ns symmetrized measures H
(1)
s and H

(2)
s .

Let’s begin with the first case in Section 3.5, where the actual adjacency matrices

Gs are known to be symmetric (with all links being undirected), and the sample reports

one unsymmetrized measure Hs for each group s. We first the missing rate p. Let H̃s
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denote a new symmetrized measure with its (i, j)-th component constructed as H̃s,ij =

max{Hs,ij, Hs,ji}. Define:

ψs ≡ ψ(Hs) and ψ̃s ≡ ψ(H̃s).

We estimate the missing rate p by

p̂ =
1
S

∑S
s=1 ψ̃s

1
S

∑S
s=1 ψs

− 1.

Assume 1
S

∑S
s=1E[ψ(Gs)] converges to a finite constant as S → ∞. With (A1) and

(A2) holding for each group s, 1
S

∑S
s=1E(ψs) and 1

S

∑S
s=1E(ψ̃s) also converge. Denote

their limits by µψ and µψ̃ respectively. Let χs ≡ (ψ̃s − E[ψ̃s], ψs − E[ψs])
′. Suppose

1
S

∑S
s=1E(χsχ

′
s) → Σψ as S → ∞, with a finite Σψ. By the Delta Method,

√
S (p̂− p)

d−→ N (0,RΣψR′),

where R ≡
(

1
µψ
,−µ

ψ̃

µ2ψ

)
.

We then use p̂ to adjust the 2SLS estimator, yielding consistent estimation of λ. To

simplify exposition, let ns = n for all s = 1, ..., S. Derivation for a general setting where

ns varies across the groups is similar, and only differs by requiring versions of the Law of

Large Numbers and the Central Limit Theorem for independent and heterogeneous arrays

indexed by s. In our application in Section 8, we allow variation in group (village) sizes.

For each group s and a generic p̃ ∈ (0, 1), define:

Ws(p̃) ≡
(

1
1−p̃Hsys, Xs

)
and Zs ≡ (H ′

sXs, Xs) .

Let Y denote an nS-by-1 vector that stacks ys for s ≤ S. Similarly, let W(p̂) be an nS-

by-(K + 1) matrix that stacks Ws(p̂) for s ≤ S, and Z an nS-by-2K matrix that stacks Zs

for s ≤ S. Our estimator for θ ≡ (λ, β′)′ is:

θ̂ ≡
(
A′B−1A

)−1
A′B−1 (Z′Y ) , (10)
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where

A ≡ Z′W(p̂) and B ≡ Z′Z.

The next proposition characterizes the limiting distribution of θ̂ as S → ∞. Define

Σ0 ≡
(
A′

0B
−1
0 A0

)−1
A′

0B
−1
0 with B0 ≡ E(Z ′

sZs) and A0 ≡ E [Z ′
sWs(p)], where p is the

actual missing rate that generates the sample data. Let ξs ≡ Z ′
svs − F0χs, where vs is the

n-by-1 vector of composite errors in (6), and F0 is a 2K-by-1 vector defined as:

F0 ≡ E [Z ′
s▽Ws(p)θ] =

λ
(1−p)2E(Z

′
sHsys), with ▽Ws(p) ≡ dWs(p̃)

dp̃
|p̃=p =

(
Hsys
(1−p)2 , 0

)
.

Intuitively, F0 illustrates how the moment condition in 2SLS depends on the missing rate

p, and −F0χs is the adjustment in the influence function that accounts for the first-stage

estimation error in p̂.

Proposition 4. Suppose (A1), (A2), (A3), and (A4) hold, and (IV-R) is satisfied with

Z ≡ (H ′X,X). Then
√
S
(
θ̂ − θ

)
d−→ N (0,Σ0E(ξsξ

′
s)Σ

′
0),

under the regularity conditions (REG) in Appendix B.

The conditions (REG) in Appendix B are standard conditions for applying the Law of

Large Numbers, the Central Limit Theorem, and the Delta Method.

Standard errors for θ̂ are calculated by replacing A0, B0, F0, and E(ξsξ
′
s) with their

sample analogs:

Â = 1
S

∑
s
Z′
sWs(p̂), B̂ = 1

S

∑
s
Z′
sZs, F̂ = 1

S
λ̂

(1−p̂)2
∑

s
Z ′
sHsys, ξ̂s = Z ′

sv̂s − F̂ τ̂s,

where

v̂s = ys −Ws(p̂)θ̂, τ̂s =

(
1
ψ
,− ψ̃

(ψ)
2

)(
ψ̃s − ψ̃, ψs − ψ

)′
,

with ψ, ψ̃ being averages of ψs, ψ̃s over s ≤ S.

For the rest of Section 4, we explain how to apply a similar idea for estimation under

the second case in Section 3.5. In this case, the sample reports two independent network
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measures, denoted as H
(1)
s and H

(2)
s , for each group s, with missing rates p(1) and p(2)

respectively. These measures may either be symmetrized or unsymmetrized. To reiter-

ate, when H
(1)
s and H

(2)
s are unsymmetrized, our estimation method applies, regardless of

whether the actual matrix G is known to be symmetric or not.

As noted in Section 3.4, these lead to two feasible structural forms, depending on which

network measure is used:

ys = W (t)
s θ + v(t)s for t = 1, 2, (11)

where θ ≡ (λ, β′)′, W
(t)
s ≡

(
H

(t)
s ys

1−p(t) , Xs

)
, and v

(t)
s ≡ εs + λ

(
Gs − H

(t)
s

1−p(t)

)
ys. The exoge-

nous instruments for these two systems are respectively Z
(1)
s ≡ (H

(2)
s Xs, Xs) and Z

(2)
s ≡

(H
(1)
s Xs, Xs). Let’s write:

Z̃s ≡

 Z
(1)
s 0

0 Z
(2)
s

 ; ỹs ≡

 ys

ys

 ; W̃s ≡

 W
(1)
s

W
(2)
s

 .

Instrument exogeneity implies the following moments:

E
[
Z̃ ′
s(ỹs − W̃sθ)

]
= 0.

This moment condition identifies θ, provided E(Z̃ ′
sW̃s) has full rank. Using arguments

similar to Proposition 3 in Section 3.3, we can derive analogous sufficient conditions for

this rank condition. We omit the details here for brevity.

We define a system, or stacked, two-stage least squares (S2SLS) estimator as follows.

Let Z̃ denote a 2nS-by-4K matrix that is constructed by vertically stacking S matrices

(Z̃s)s≤S. Likewise construct a 2nS-by-(K + 1) matrix W̃ by stacking (W̃s)s≤S (with p(t)

replaced by its analog estimates p̂(t)) and a 2nS-by-1 vector ỹ by stacking (ỹs)s≤S. The

S2SLS estimator is

θ̃ ≡ [W̃
′
Z̃(Z̃

′
Z̃)

−1
Z̃′W̃]

−1
W̃′Z̃(Z̃

′
Z̃)

−1
Z̃′ỹ. (12)

This provides us with a single estimator that exploits both sets of instruments in the two

structural forms in (11). Similar to θ̂ in (10), we can readily construct the standard error

for θ̃ that accounts for estimation error in p̂(1), p̂(2). We omit details here for brevity.
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5 Extensions

We now extend the baseline method in Section 3 to more general settings with contextual

effects, heterogeneous missing rates, or group fixed effects. In each case we focus on ex-

tending the ideas for constructive identification. Estimation in each of these cases follows

from constructive identification arguments and analogous estimation steps in Section 4.

As before, to simplify exposition, let group sizes ns = n be fixed throughout the re-

mainder of this section. This also allows us to suppress group subscripts s in notation.

5.1 Contextual effects

Suppose the structural form is:

y = λGy +Xβ +GXγ + ε,

where γ are contextual effects showing how individual outcomes are directly influenced by

the characteristics of others linked to the individual. The reduced form is

y =M(Xβ +GXγ + ε),

where M is defined as in (4). The noisy structural form based on H is:

y = λ
Hy

1− p
+Xβ +

HX

1− p
γ + η,

where the composite error η is defined as

η ≡ ε− λ
(

H
1−p −G

)
y −

(
H
1−p −G

)
Xγ.

Under the same conditions and by the same arguments as in the case with no contextual

effects (Section 3.2), rescaling H by (1 − p) yields a new composite error η that is mean-

independent from (X,G). We can similarly construct instruments using network measures

H as before. Our next proposition establishes these results. For generality, let ζ(X) ∈ Rn×L
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be any generic function of X with L ≥ K.

Proposition 5. Suppose (A1), (A2), and (A3) hold. Then E(η|X,G) = 0. If in addition

(A4) holds, then E{[H ′ζ (X)]′η} = 0.

This proposition implies that H ′ζ(X) satisfies instrument exogeneity for generic func-

tions of X. In fact, a stronger result holds under (A1)-(A4): E(Hη|G,X) = 0. The

intuition is the same as in Proposition 2. Thus we can apply 2SLS as before to consis-

tently estimate (λ, β′, γ′)′ using (H ′X,X,H ′ζ(X)) as instruments for W ≡
(
Hy
1−p , X,

HX
1−p

)
,

provided appropriate rank conditions hold.

5.2 Heterogeneous missing rates

We now extend our methods to allow the missing link rate p to vary with individual

characteristics X. To focus on the main idea, we return to the case with no contextual

effects as in (6). The generalization to include contextual effects, using the results of the

previous sub-section, is immediate.

Suppose we replace (A2) with a more general condition:

(A2’) E(Hij|Gij = 1, X) = 1− pij(X) and E(Hij|Gij = 0, X) = 0 ∀i ̸= j.

Under (A2’), E(H|G,X) = Q◦G, where Q is an n-by-n matrix with its (i, j)-th component

Qij ≡ 1− pij(X) and “◦” denotes the Hadamard product. We suppress the dependence of

Q on X for simplicity. By the law of iterated expectation,

E (H|X) = Q ◦ E (G|X) .

To recover pij(·), we can apply methods similar to Section 3.5 by focusing on single

links and conditioning on X. For example, consider the second case in Section 3.5, where

the sample reports two noisy measures with missing rates p
(1)
ij (X) and p

(2)
ij (X) respectively.

Under (A2’), E
(
H

(t)
ij

∣∣∣X) =
[
1− p

(t)
ij (X)

]
E(Gij|X) for any i ̸= j and t = 1, 2. As before,

we can construct a third measure H
(3)
ij = max{H(1)

ij , H
(2)
ij } for each pair i ̸= j, and then
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identify the missing rates as

p
(1)
ij (X) =

E
(
H

(3)
ij −H(1)

ij

∣∣∣X)
E
(
H

(2)
ij

∣∣∣X) and p
(2)
ij (X) =

E
(
H

(3)
ij −H(2)

ij

∣∣∣X)
E
(
H

(1)
ij

∣∣∣X) .

In practice, we can mitigate the curse of dimensionality by specifying the missing rates

pij(X) and link formation probability E(Gij|X) as functions of Xi and Xj alone.

With knowledge (or estimates) of the heterogeneous missing rates, we can use 2SLS to

consistently estimate (λ, β′)′. Let Q̃ denote a “pointwise inverse” of Q, with the (i, j)-th

entry being Q̃ij ≡ 1/(1 − pij). With the missing rates identified, we can transform the

structural form in (6) as

y = λ
(
Q̃ ◦H

)
y +Xβ + ε+ λ[G−

(
Q̃ ◦H

)
]y︸ ︷︷ ︸

v∗

.

Under (A2’) and (A3),

E(v∗|G,X) = λ{GE(y|G,X)− E
[(
Q̃ ◦H

)
y
∣∣∣G,X]}

= λ[GMXβ − Q̃ ◦ E(H|G,X)MXβ] = λ(G− Q̃ ◦Q ◦G)MXβ = 0. (13)

Let W ∗ ≡
((
Q̃ ◦H

)
y,X

)
and Z∗ ≡ (ζ(X), X) where ζ(X) ∈ Rn×L is a nonlinear

function of X with L ≥ K (e.g., ζ(X) ≡ X ◦ X). Then (13) implies E(Z∗′v∗) = 0. If

E(W ∗′Z∗) and E[Z∗′Z∗] have full rank, we can use 2SLS to consistently estimate λ and β.8

5.3 Group fixed effects

Suppose each group has an unobserved fixed effect α, so that the structural form is:

y = λGy +Xβ + α + ε.

8With heterogeneous missing rates, H ′X does not satisfy instrument exogeneity, because H(Q̃ ◦H) ̸=
Q̃ ◦H2 in general.
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Let G denote an n-by-n matrix with identical rows, each of which equals the average of all

rows in G. Define H and X analogously. Applying within transformation (as in fixed-effect

estimation of a linear panel data model) using the group mean ȳ ≡ 1
n

∑n
i=1 yi, we eliminate

α and get

y − y =
λ

1− p

(
H −H

)
y + (X −X)β + v − v,

where

v − v = ε− ε+ λ

[
G− H

1− p
−
(
G− H

1− p

)]
y.

Because G and H are linear functions of G and H respectively, the same argument as

Lemma 1 in Section 3 applies to show that E(v− v|X,G) = 0. We can therefore use 2SLS

to estimate (λ, β′)′ exactly as before, after applying the within transformation.

6 A Single Large Network

So far we have focused on cases where the sample consists of many small, fixed-sized groups,

where no links exist between members of different groups.

In this section we show how our method can be applied to settings with interdependence

between all individuals in a sample. Specifically, we consider two settings in which some

forms of weak dependence exist between individuals that are “far enough” from each other.

For both settings, our proposed 2SLS estimators, when pooling observations over a single

large network in the sample, remain consistent and asymptotically normal.

6.1 Nearly block-diagonal (NBD) networks

In this section, we consider a setting in which the sample can be partitioned into well-

defined, approximate groups, which we henceforth refer to as “blocks”. Links within each

block are dense (i.e., the probability of forming links between two individuals within the

same block does not diminish as the sample size increases). Links between individuals

from different blocks exist but are sparse, so the probability of forming links across blocks

diminishes as the number of blocks increases. Measurement issues arise because of two
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reasons. First, as before, links that exist within each block are missing randomly from

the sample at a fixed rate. Second, those sparse cross-block links that now exist are never

reported in the sample.

Formally, we partition the individuals in the sample into S blocks. Each block s consists

of ns members, with ns ≥ 3 being finite integers. To reiterate, links between individuals

within the same block are reported in the sample, but are missing at a rate p ∈ (0, 1) due

to measurement errors. Links between individuals across different blocks are not reported

in the sample. The sample size is N ≡
∑S

s=1 ns. Let GN and HN denote the true and

noisy, unsymmetrized measures of N -by-N adjacency matrices respectively, which span the

S blocks observed in the sample.

To facilitate derivation of the asymptotic properties of our 2SLS estimators, let G̃N be a

hypothetical block-diagonal approximation of GN , which perfectly reports all within-block

links but drops all cross-block links. That is, for all individual i,

G̃N,ij = GN,ij if j ∈ s(i); G̃N,ij = 0 if j /∈ s(i),

where s(i) indicates the block that i belongs to. By construction, all elements outside the

diagonal blocks in G̃N are zeros. We maintain the following assumptions on the measure-

ment errors in HN :

(N1) E(HN,ij|G̃N , X) = E(HN,ij|G̃N,ij, X) ∀i ̸= j, and

(N2) E(HN,ij|G̃N,ij = 1, X) = 1− p and E(HN,ij|G̃N,ij = 0, X) = 0 ∀i ̸= j.

Furthermore, we maintain that the block-specific random arrays, HN,s, G̃N,s, XN,s, ϵN,s

(with HN,s, G̃N,s being ns-by-ns matrices), are drawn independently across the blocks.

We provide conditions under which, in this setting of a single, large network, our 2SLS

consistently estimates structural parameters up to augmentation bias, which as before can

be removed using estimates of 1 − p. We return to the model with no contextual effects,
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so that the structural form is

yN = λGNyN +XNβ + εN , (14)

where yN , εN are N -by-1 vectors and XN is N -by-K matrix of individual characteristics.

In Online Appendix A, we show a structural form using the noisy network measure is

yN = λ
1−pHNyN +XNβ + vN + uN , (15)

where uN ≡
(
IN − λHN

1−p

)(
IN − λG̃N

)−1

λ∆NyN with ∆N ≡ GN − G̃N and

vN ≡ εN + λ
(
G̃N − HN

1−p

)
ỹN with ỹN ≡ (IN − λG̃N)

−1(XNβ + εN).

Note that we decompose composite errors in (15) into uN and vN , which are both

vectorizations of block-specific vectors uN,s and vN,s. While vN,s are independent across

the blocks, uN,s are correlated across the blocks because of interdependence between yN,s

due to sparse links between the blocks. This difference requires us to apply separate tactics

to characterize their contribution to the estimation errors.

This decomposition of the composite error is useful for illustrating two main steps for

deriving the asymptotic result. To see this, recall the 2SLS estimator that uses ZN ≡

(H ′
NXN , XN) as instruments for RN ≡ (HNyN , XN) is:

θ̂a =
(
A′
NB

−1
N AN

)−1
A′
NB

−1
N Z ′

NyN ,

where AN ≡ Z ′
NRN and BN ≡ Z ′

NZN . By definition,

θ̂a − θa =
(
A′
NB

−1
N AN

)−1
A′
NB

−1
N Z ′

N(vN + uN),

where θa ≡
(

λ
1−p , β

′
)′

with the subscript a being a reminder that this estimand has aug-

mentation bias. Thus the asymptotic property of the estimator depends on that of Z ′
NvN

and Z ′
NuN , which we investigate sequentially.
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First, we characterize the order of Z ′
NvN , using the fact that vN,s are independent

across blocks s. To see why such independence holds, recall that HN,s, G̃N,s, XN,s, ϵN,s are

assumed independent across blocks s. By construct, G̃N , HN , and (I−λG̃N)
−1 are all block-

diagonal. Hence we can write ỹN as a vectorization of independent, hypothetical reduced

forms. That is, ỹN = vec([ỹN,1, ỹN,2, ..., ỹN,S]), where ỹN,s = (Is − λG̃N,s)
−1(XN,sβ + εN,s)

are independent across s.9 It then follows that vN,s = εN,s + λ
(
G̃N,s − HN,s

1−p

)
ỹN,s, and are

independent across s.

We maintain exogeneity and independence conditions which are analogous to (A3) and

(A4) for the case with small groups in Section 3:

(N3) E(εN,s|XN,s, GN,s, HN,s) = 0 for all s;

(N4) Conditional on (GN , XN), HN,ij⊥ HN,kl for all (i, j) ̸= (k, l).

Under these conditions, E(vN,s|XN,s, HN,s) = 0. The independence between vN,s mentioned

above then allows us to apply the law of large numbers (Lemma A3 in the Online Appendix)

to show that
1

S
Z ′
NvN =

1

S

∑
s
Z ′
N,svN,s = Op(S

−1/2).

Second, for analyzing the large-sample property of Z ′
NuN , we exploit the fact that it

takes the form of CN∆NyN , where both CN and yN are uniformly bounded under mild

regularity conditions (Lemma A2 in the Online Appendix). Hence the order of 1
S
Z ′
NuN

is bounded above by the expected number of missing links across the blocks, which are

assumed to be sparse in the following sense:

(S-LOB)
∑N

i=1

∑
j ̸∈s(i)

E (|∆N,ij|) = O(Sρ) for some ρ < 1.

This condition holds trivially in the many-group setting considered in Section 3, where by

construction the total number of cross-block links is zero. It also holds if, for individuals in

each block s, cross-block links only exist with a finite number of nearby blocks, and if the

9We refer to ỹN as a hypothetical reduced form, because it is based on the block-diagonal approximation
G̃N rather than the actual GN .
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probability for forming such links qS diminishes fast enough as the sample size grows (that

is, qS = O(S−α) with α > 1).10 Therefore, with CN and yN bounded, we can establish that

1
S
Z ′
NuN = Op(S

ρ−1) under (S-LOB) (Lemma A1 in the Online Appendix.) This sparsity

condition ensures AN , BN converge in probability to deterministic arrays in large samples

(Lemma A3 in the Online Appendix.) Regularity conditions used for deriving asymptotic

properties of θ̂a − θa are collected as Condition (S-REG) in Online Appendix A.

Putting these pieces together, we show that a feasible 2SLS estimator, which uses a

noisy measure H and ignores all links between different blocks, consistently estimates the

(augmented) structural parameter θa ≡
(

λ
1−p , β

′
)′

at a rate that is governed by the order

of sparse, cross-block links. This result is formalized in the next proposition.

Proposition 6. Suppose (N1), (N2), (N3) and (N4) hold. If Assumptions (S-LOB) and

(S-REG) hold, then

θ̂a − θa = Op(S
−1/2 ∨ Sρ−1).

If in addition ρ < 1/2, then

√
S
(
θ̂a − θa

)
d−→ N (0,Ω),

where Ω ≡
(
A′

0B
−1
0 A0

)−1
A′

0B
−1
0 ω0B

−1
0 A0

(
A′

0B
−1
0 A0

)−1
with A0, B0, ω0 being non-stochastic

arrays defined in the Online Appendix A.

This proposition implies θ̂a
p−→ θa because ρ < 1. Furthermore, if ρ < 1/2, the

asymptotic distribution is determined by the leading term of 1√
S
Z ′
NvN , and hence matches

the case of S independent small groups.

To estimate the missing rate p and remove the augmentation bias, one can apply the

same method as the first step in Section 4, which remains valid because of independence

of HN,s across the blocks s = 1, 2, ..., S.

10To see this, suppose all blocks have identical size ns = n < ∞. Then the expected number of the
cross-block links is S(S − 1)× n2 × qS = O(S2−α), which satisfies (S-LOB).
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6.2 Networks with near-epoch dependence (NED)

Here we obtain another consistency result for a different setting, in which the data consists

of a single network that does not admit any definition of “approximate groups”, but does

include some notion of “distance” between individuals on the network. The main working

assumption in this case is that the dependence between two individuals weakens as the

distance between them increases, which is reminiscent of the notion of weak dependence in

time series models.

Using this primitive condition, we show that observed outcomes satisfy a notion of

near-epoch dependence (NED) as used in Jenish and Prucha (2012). Hence a form of the

law of large numbers and the central limit theorem can be applied to sample averages over

individual outcomes and covariates. We also show that the adjusted-2SLS estimator, when

pooling observations over a single large network in the sample, converges in probability to

the structural parameters, where the augmentation bias can be removed as before, once

missing rates are estimated. Details are in the Online Appendix B and C of this paper.

7 Simulation

In this section we use monte carlo simulation to investigate the finite sample performance

of our two-step 2SLS estimator in Section 4. Recall that the structural form of the data-

generating process is:

ys = λGsys +Xsβ + εs, s = 1, 2, ..., S.

We fix each group size to be ns = 20 in our simulation. In our design, each member i in

each group s has two individual characteristics Xs,i ∈ R2, which are drawn independently

across i and s. The first component Xs,i,1 is uniformly distributed over a finite support

{−1, 1, 2} while the second component Xs,i,2 is standard normal N(0, 1). We consider

three designs, corresponding to small, medium, and large peer effects, in which the true

parameters are:

λ ∈ {0.20, 0.35, 0.60} while (β1, β2) = (−1.5, 2).
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The formulation of undirected links in the data-generating process is specified as follows.

First, each individual sends invitations to two other individuals who are drawn randomly

from the same group without replacement. An undirected link exists between two group

members if either of them sends an invitation to the other. No links are formed across the

groups. This generates each G matrix. Each H matrix is then constructed by dropping

existing links randomly at the rate p = 1/2.

The size of a sample is defined as the number of independent groups in that sample.

For each fixed sample size S ∈ {100, 400, 900}, we generate T = 200 samples. (Our

simulated samples do not contain networks that are singular, which would violate regularity

conditions.) By applying our two-step 2SLS estimator from Section 4 in each sample

t = 1, 2, ...T , we record the empirical distribution of these estimates of (λ, β1, β2). Table 1

below reports the average bias, sample variance, and mean-squared errors (MSEs) based

on this empirical distribution.

Table 1. Two-step 2SLS Estimator Performance in Simulated Samples

S λ=0.2 β1 β2

100 avg. bias 0.000 0.014 0.002

variance 0.000 0.009 0.008

m.s.e. 0.000 0.009 0.008

400 avg. bias 0.000 0.003 0.002

variance 0.000 0.002 0.002

m.s.e. 0.000 0.002 0.002

900 avg. bias 0.000 0.001 0.000

variance 0.000 0.001 0.001

m.s.e. 0.000 0.001 0.001

λ=0.35 β1 β2

0.009 0.055 -0.089

0.015 0.175 0.404

0.015 0.178 0.412

0.006 0.016 -0.037

0.002 0.033 0.083

0.002 0.033 0.084

0.005 0.004 -0.019

0.001 0.013 0.035

0.001 0.013 0.036

λ=0.6 β1 β2

-0.303 0.734 -0.679

0.173 1.672 1.694

0.265 2.211 2.155

-0.142 0.361 -0.235

0.176 0.780 0.606

0.196 0.910 0.661

-0.056 0.162 -0.147

0.072 0.382 0.410

0.074 0.408 0.431

Table 1 shows that the mean-squared errors diminish as the sample size increases. For

each parameter, the rate of decrease in MSE is roughly proportional to the rate of increase

in the sample size. This offers evidence for the root-n convergence of our 2SLS estimator. It

is also clear that estimator variance accounts for a major portion of the MSEs. For a fixed
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sample size and design, both the bias and variance of the peer effect λ are smaller than

those for the individual effect (β1, β2). We also note that, as the peer effects λ increase,

the MSEs increase for all parameters. This might be related to the fact that the variance

of the estimator depends on the variation of ys, which is scaled by (1− λG)−1.

8 Application: Microfinance Participation in India

We apply our method to study how peer effects influence household decisions to participate

in a microfinance program in India. The sample was collected by Banerjee et al. (2013)

using survey questionnaires from the State of Karnataka, India between 2006-2007. Baner-

jee et al. (2013) impute a social network structure in the sample by aggregating several

network measures that were inferred from the survey responses. They studied how the

dissemination of information about a microfinance program, Bharatha Swamukti Sams-

the, or BSS, depended on the network position of the households that were the first to

be informed about the program. Banerjee et al. (2013) use a binary response model with

social interactions to disentangle the effect of information diffusion from the peer effects,

a.k.a. endorsement effects. In contrast, we use two of the multiple measures in Banerjee

et al. (2013) as noisy proxies for an actual network, and apply our method to estimate peer

effects in a linear social network model.

8.1 Institutional background and data

The sample was collected by Banerjee et al. (2013) through survey questionnaires from 43

villages in the State of Karnataka, India.11 These villages are largely linguistically homo-

geneous but heterogeneous in terms of caste. The sample contains information about the

socioeconomic status and some demographic characteristics of 9,598 households. On aver-

age, there were about 223 households in each village, with a minimum of 114, a maximum

of 356, and a standard deviation of 56.2.

We merge the information from a full-scale household census and an individual-level

11The data are publicly available at: http://economics.mit.edu/faculty/eduflo/social.
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survey in Banerjee et al. (2013). The household census gathered demographic information

and data on a variety of amenities, such as roofing material, type of latrine, and quality of

access to electric power. The individual survey was administered to a randomly selected

sub-sample of villagers, which covered 46% of all households in the census. Individual ques-

tionnaires collected demographic information, such as age, caste and sub-caste, education,

language, and having a ration card or not, but did not include explicit financial informa-

tion. We merge the information about the head of household from the individual survey

with the household information from the census. This yields a sample of 4,149 households.

Table 2(a) reports summary statistics for the dependent variable (y = 1 if participates in

the microfinance program) as well as a few continuous and binary explanatory variables.

Summary statistics for additional categorical variables, such as religion, caste, property

ownership, access to electricity, etc, are reported in Table 2(b).

Table 2(a): Summary of Dependent and Explanatory Variables

Variable definition obs. mean s.d. min max

y dummy for participation 4149 0.1894 0.3919 0 1

room number of rooms 4149 2.4389 1.3686 0 19

bed number of beds 4149 0.9229 1.3840 0 24

age age of household head 4149 46.057 11.734 20 95

edu education of household head 4149 4.8383 4.5255 0 15

lang whether to speak other language 4149 0.6799 0.4666 0 1

male whether the hh head is male 4149 0.9161 0.2772 0 1

leader whether it has a leader 4149 0.1393 0.3463 0 1

shg whether in any saving group 4149 0.0513 0.2207 0 1

sav whether to have a bank account 4148 0.3840 0.4864 0 1

election whether to have an election card 4149 0.9525 0.2127 0 1

ration whether to have a ration card 4149 0.9012 0.2985 0 1

The individual-level survey in Banerjee et al. (2013) also collected information about

social interactions between households, such as (i) individuals whose homes the respondent

visited, and (ii) individuals who visited the respondent’s home. The sample in Banerjee

et al. (2013) contains two symmetric measures for the latent network, based on the responses
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to (i) and (ii) respectively.12 These two measures, reported as “visitGo” and “visitCome”

matrices, are denoted as H(1) and H(2) in our notation.

By definition, an adjacency matrix based on (i) should be identical to that based on

(ii), simply because household A visited household B also means B was visited by A. In

the sample, the network matrices are symmetrized and, therefore, if it weren’t for measure-

ment errors, H(1) would be identical to H(2), with both measuring the same underlying G.

However, as Table 3 shows, there is substantial discrepancy between these two measures

in the sample. This suggests both H(1), H(2) are noisy proxies of G, with their zero entries

possibly indicating missing links.13

Table 3 reports the empirical distribution of the degrees of H(1) and H(2). Because

these measures are symmetric, there is no distinction between the degrees of in-bound or

out-bound links. We pool all households across 43 villages into a single, large network.

There are no links between households from different villages in the sample, so the network

structure is block-diagonal.

Table 3 indicates large variation in the number of connections the households have. To

reiterate, if there were no missing links in these reported measures, we would expect the

two matrices H(1) and H(2) to be identical, and therefore have exactly the same degree

distribution. The fact that they differ substantially is indicative of many missing links,

possibly due to the respondents’ recall errors, or to differences in how they interpret the

visiting question. Thus, the two measures H(1), H(2) lend themselves to application of our

method using two symmetric, noisy network measures in Section 3.4.

12Two households i and j are considered connected by an undirected link if an individual from either
household mentioned the name of someone from the other household in response to the question in (i).
Likewise, a second symmetric network measure is constructed based on responses to (ii).

13Banerjee et al. (2013) aggregate responses from 12 questions, including (i) and (ii), to construct a
single symmetric network, which they consider to be, without any errors, an actual relevant adjacency
matrix G. In contrast, we take a different approach by interpreting responses to questions (i) and (ii) as
two different noisy measures of a true underlying latent network.
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Table 2(b): Summary of Category Variables

Variable definition obs. per. Variable definition obs. per.

religion latrine

- Hinduism 3943 95.04 - Owned 1195 28.80

- Islam 198 4.77 - Common 20 0.48

- Christianity 7 0.19 - None 2934 70.72

roof own property ownership

- Thatch 82 1.98 - Owned 3727 89.83

- Tile 1388 33.45 - Owned & shared 32 0.77

- Stone 1172 28.25 - Rented 390 9.40

- Sheet 868 20.92

- RCC 475 11.45

- Other 164 3.95

electricity electricity provision caste

- Scheduled caste 1139 27.54

- Private 2662 64.18 - Scheduled tribe 221 5.34

- Government 1243 29.97 - OBC 2253 54.47

- No power 243 5.86 - General 523 12.65

Table 3: Degree Distribution in Two Network Measures

Degree 0 1 2 3 4 5 6 7 8 9 10

H(1) 2 21 110 227 357 505 526 546 506 379 269

H(2) 4 24 112 245 384 522 534 577 491 386 255

Degree 11 12 13 14 15 16 17 18 19 20 ≥ 21

H(1) 224 145 90 74 54 33 27 15 9 6 24

H(2) 179 137 102 59 46 28 22 13 9 3 17

8.2 Empirical strategy for estimating peer effects

We use the following specification for the feasible structural form:

y = λ

(
H(t)

1− p(t)

)
y +Xβ + villageFE + v(t) for t = 1, 2, (16)
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where y is a binary variable indicating whether the household participated in the microfi-

nance program (BSS), X is a matrix of household characteristics, and villageFE are village

fixed effects. Definition and summary statistics of regressors in X are listed in Table 2.

Note that (16) provides two different feasible structural forms (of the same underlying true

structural model), corresponding to t = 1, 2 respectively.

To implement an adjusted-2SLS estimator, we first estimate the missing rates p(t) for

t = 1, 2, and use them to rescale the endogenous regressors as in Section 4. Following

Section 3.5, we construct H(3) = max{H(1), H(2)} and estimate the missing rates as

p̂(1) =
ψ(H(3))− ψ(H(1))

ψ(H(2))
= 0.1681, and p̂(2) =

ψ(H(3))− ψ(H(2))

ψ(H(1))
= 0.1909,

where ψ(H) is the mean of off-diagonal entries in H. We replace p(1) and p(2) in equation

(16) with p̂(1) and p̂(2) respectively, and then apply the 2SLS estimators in Section 4.

The results are reported in Table 4. The columns of Table 4 are all 2SLS estimates,

defined as follows:

Column (a) ignores missing links in H(1), and so treats H(1) as if it were the true

adjacency matrix G, by putting (unscaled) λH(1)y on the right-hand side, and using H(1)X

as the instruments for H(1)y in 2SLS.

Column (b) estimates the structural form for t = 1 in (16), using H(2)X as instruments

for
(

H(1)

1−p̂(1)

)
y in adjusted 2SLS.

Column (c) is identical to Column (a), except for using H(2) instead of H(1) everywhere,

and so treats H(2) as if it were the true matrix G for 2SLS estimation

Column (d) is identical to column (b), except for switching the roles of the matrices

H(1) and H(2). So the feasible structural model in (16) is written in terms of t = 2, and

H(1)X is used as instruments for
(

H(2)

1−p̂(2)

)
y.

Column (e) applies the S2SLS estimator defined in (12) in Section 4. This estimator

combines (stacks) the 2SLS moments used in Columns (b) and (d) above, and so combines

the moments generated by both of the feasible structural models and their associated IVs

into a single estimator.
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In summary, the estimators in (a) and (c) are what a researcher would do if he or she

ignored the missing links problem and treated either H(1) or H(2), respectively, as if it were

the true adjacency matrix G, applying the standard 2SLS estimator that is proposed in

the literature. In contrast, the corresponding adjusted-2SLS estimators in (b), (d) and (e)

are estimators that we propose to remove the augmentation bias in 2SLS resulting from

missing links.14 Column (e) in particular combines the information used to construct the

estimators in both columns (b) and (d), and so is our preferred estimator.

8.3 Empirical results

Table 4 reports that our adjusted 2SLS estimates for the peer effect λ̂ are 0.0456 when

using H(1)y in the structural form (column (b)), 0.0484 using H(2)y (column (d)), and

0.0461 using both measures and S2SLS (column (e)). These estimates are all significant at

the 1% level, and the differences between them are small relative to the standard errors.

These estimates imply the likelihood of a household to participate in the microfinance

program is increased by about 4.6% when the household is linked to one more participating

household on the network (note for this calculation that our model does not row-normalize

the network measures). With the average participation rate being 18.9% in the sample,

these estimates suggest that peer effects, called “endorsement effects” in Banerjee et al.

(2013), are economically substantial.

The signs of estimated marginal effects by individual or household characteristics are

plausible. Column (e) suggests the head of household being a “leader” (e.g. a teacher, a

leader of a self-help group, or a shopkeeper) increases the participation rate by around 3.9%.

These households with “leaders” were the first ones to be informed about the program, and

were asked to forward information about the microfinance program to other potentially

interested villagers. These leaders had received first-hand, detailed information about the

program from its administrator, which could be conducive to higher participation rates.

Households with younger heads are more likely to participate, but the magnitude of this

14We need two noisy network measures in this particular context because the available reported measures
are symmetric. As we show in Section 3.3, our method can also be used if the sample reports a single yet
asymmetric noisy measure of the network.
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age effect is less substantial. Being 10 years younger increases the participation rate by

1.7%. Having a ration card increases the participation rate by around 4.3%. Compared to

households using private electricity, households using government-supplied electricity have

a 3.4% higher participation rate. These two factors indicate that, holding other factors

equal, households in poorer economic conditions are more inclined to participate in the

microfinance program.

Table 4 also shows that, if we had ignored the issue of missing links in network mea-

sures, and had done 2SLS using H(t)X as instruments for the (unscaled) endogenous peer

outcomes H(t)y, then the estimator would have been considerably biased upward. In (a),

where we use H(1)X as instruments for H(1)y, the estimate for λ is 0.0498. In comparison,

in (b), where we correct for missing link bias by using H(2)X as instruments for H(1)y
1−p̂(1) ,

the estimated λ is 0.0456. The upward bias resulted from ignoring the missing links is

about 9.2% (as 0.0498/0.0456=1.092). Likewise, in (c) where we erroneously use H(2)X as

instruments for H(2)y, we get a proportionally almost the same upward bias in the peer

effect estimate compared with the correct estimate in (d) (as 0.0529/0.0484=1.093).

The over 9% upward bias in (a) and (c) is a manifestation of two factors at work.

First, with missing links the instruments H(t)X are invalid because of the correlation be-

tween H(t)X and the composite errors v(t). Second, even if these instruments were valid,

the augmentation bias, as defined in Section 3.2, would be present without rescaling the

endogenous peer outcomes H(t)y by 1− p(t).

The magnitude of this upward bias is determined by the magnitude of p(t) and by the

correlation between the composite error and the invalid instruments. The microfinance

survey data in Banerjee et al. (2013) is considered to have high quality social network

information. In other empirical environments, we may expect even larger bias when missing

links are not accounted for in estimation. The method we propose in this paper provides

an easy remedy for this issue.
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Table 4: Two-stage Least Square Estimates

(a) (b) (c) (d) (e)

r.h.s. endogeneity H(1)y H(1)

1−p̂1y H(2)y H(2)

1−p̂2y
H(t)

1−p̂ y

IV used H(1)X H(2)X H(2)X H(1)X Combined

λ̂ 0.0498*** 0.0456*** 0.0529*** 0.0484*** 0.0461***

(0.0076) (0.0096) (0.0092) (0.0087) (0.0075)

leader 0.0378** 0.0364** 0.0418** 0.0405** 0.0387**

(0.0185) (0.0186) (0.0182) (0.0182) (0.0183)

age -0.0016*** -0.0017*** -0.0016*** -0.0017*** -0.0017***

(0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

ration 0.0441** 0.0435** 0.0423** 0.0413** 0.0426**

(0.0201) (0.0201) (0.0195) (0.0194) (0.0197)

electricity − gov 0.0343** 0.0333** 0.0352** 0.0341** 0.0339**

(0.0157) (0.0157) (0.0156) (0.0155) (0.0156)

electricity − no 0.0223 0.0229 0.0237 0.0247 0.0236

(0.0297) (0.0297) (0.0300) (0.0298) (0.0298)

caste− tribe -0.0285 -0.0272 -0.0275 -0.0257 -0.0268

(0.0312) (0.0309) (0.0305) (0.0300) (0.0305)

caste− obc -0.0520** -0.0490** -0.0486** -0.0441*** -0.0473***

(0.0217) (0.0212) (0.0215) (0.0206) (0.0210)

caste− gen -0.0734*** -0.0698*** -0.0688*** -0.0628** -0.0673***

(0.0239) (0.0242) (0.0241) (0.0234) (0.0239)

religion− Islam 0.0980*** 0.0955*** 0.0893*** 0.0849*** 0.0910***

(0.0323) (0.0323) (0.0343) (0.0344) (0.0332)

religion− Chri 0.1434 0.1420 0.1466 0.1452 0.1438

(0.130) (0.1287) (0.1314) (0.1300) (0.1293)

Controls
√ √ √ √ √

V illageFE
√ √ √ √ √

R2 0.1332 0.1345 0.1350 0.1365 0.1353

Obs 4134 4134 4134 4134 4134

Note: s.e. in parentheses. ***, **, and * indicate 1%, 5%, and 10% significant.

Controls include male, roof , room, bed, latrine, edu, lang, shg, sav, election, and own.
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We conclude this section with some model validation results in Table 5, which shows

how the predicted values of E(y|X) fit with the sample data. The Probit and Logit models

use the same set of regressors as in Table 4. We report the summary statistics of the fitted

values Ê(y|X) under different models. Columns (a) through (d) of Table 5 are the fitted

values of the feasible structural models used in each of the corresponding columns in Table

4. Column (e) in Table 4 used two different feasible structural models to obtain S2SLS

estimates. To make use of both for fitted values, in column (e) of table 5 we use the S2SLS

estimates of (λ, β) and construct fitted values based on λ̂ H(3)

1−p1p2y +Xβ̂ + F̂E, where H(3)

is as defined in Section 3.5.

Table 5: Model Validation: Predicted Microfinance Participation

Ê(y|X) Probit Logit OLS (a) (b) (c) (d) (e)

mean 0.1894 0.1894 0.1894 0.1894 0.1894 0.1894 0.1894 0.1881

s.t.d 0.1176 0.1181 0.1151 0.1339 0.1376 0.1356 0.1409 0.1337

min 0.0103 0.0166 -0.095 -0.104 -0.108 -0.127 -0.131 -0.110

max 0.7490 0.7673 0.6895 0.7807 0.8016 0.7279 0.7576 0.8036

< 0 0% 0% 2.95% 4.67% 4.98% 4.79% 5.49% 4.84%

I{Ê(y|X) > 0.5}
underpredict (1 to 0) 17.76% 17.66% 18.34% 17.34% 17.17% 17.34% 17.13% 17.30%

overpredict (0 to 1) 0.92% 1.11% 0.27% 0.87% 1.02% 0.85% 0.97% 0.80%

correct 81.33% 81.23% 81.40% 81.79% 81.81% 81.81% 81.91% 81.91%

In all but one of the models in Table 5, the sample mean of the predicted participa-

tion probability Ê(y|X) is 0.1894, which is equal to the sample mean of y in the 4,134

observations used in the regression. The standard deviation of the predicted participation

probability varies across different models. Predictions of linear probability models (LPM),

reported under the column of “OLS” and (a)-(e), are mostly within the unit interval [0, 1].

LPM predictions are strictly less than 1 for all observations in the sample; Only 2.95% to

5.49% of the households in the sample end up with negative LPM predictions. That is,

about 95% all LPM predictions in the sample are indeed within the unit interval.

Based on Ê(y|X), we use the indicator I(Ê(y|X) > 0) to predict whether an individual

participates in the microfinance program, and calculate prediction rates. Predictions in our
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linear social network models in columns (a)-(e) generally outperform the OLS, Probit and

Logit models in terms of the percentage of correct predictions.

9 Conclusion

This paper proposes adjusted-2SLS estimators that consistently estimate structural param-

eters, which include peer, individual, and contextual effects, in social network models when

actual existing links are missing randomly from the sample. By rescaling the endogenous

peer outcomes and applying new instruments constructed from noisy network measures,

our estimators resolve the additional endogeneity issues caused by missing links. As an

intermediate step of the method, we provide methods to estimate the rates at which links

are missing from noisy measures of network links. We also show that ignoring missing links

generally leads to augmentation bias, i.e., peer effect estimates are generally biased upward.

We apply our method to analyze the peer (endorsement) effects in households’ decisions

to participate in a microfinance program in Indian villages, using the data collected by

Banerjee et al. (2013). Consistent with our theoretical results, our empirical estimates

show that ignoring the issue of missing links in the 2SLS estimation of the social network

model leads to a substantial upward bias (over 9%) in the estimates of peer effects.
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Appendix

A. Identification proofs

Proof of Lemma 1. Under (A3), we have E(Gy|X,G) = E[GM(Xβ + ε)|X,G] = GMXβ,

and E(Hy|X,G) = E[HME (Xβ + ε|X,G,H) |X,G] = E(H|G,X)MXβ.

Under (A1) and (A2), E(H|G,X) = (1− p)G. It follows from the definition of v in (6)

that E(v|X,G) = 0.

Proof of Proposition 2. Under (A1), (A2), and (A4), the conditional mean of the (i, j)-th
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entry in H2 is

E
[
(H2)ij|G,X

]
= E

(∑
k ̸=i,j

HikHkj

∣∣∣G,X) =
∑

k ̸=i,j
E (HikHkj|G,X)

=
∑

k ̸=i,j
E (Hik|Gik, X)E (Hkj|Gkj, X) =

∑
k ̸=i,j

(1− p)Gik(1− p)Gkj

= (1− p)2
(
G2
)
ij
. (17)

Besides, under (A1) and (A2),

E [HG|G,X] = E(H|G,X)G = (1− p)G2. (18)

It then follows that

E[(H ′X)′v|G,X] = E(X ′Hε|G,X) + λE

[
X ′H

(
G− H

1− p

)
y

∣∣∣∣G,X]
= λE

[
X ′H

(
G− H

1− p

)
MXβ

∣∣∣∣G,X]
= λX ′

(
E(HG|G,X)− E(H2|G,X)

1− p

)
MXβ = 0,

where the first two equalities are due to (A3), and the last holds because of (17) and (18)

under (A1), (A2), and (A4).

As noted in Section 3.4, one can construct instruments from multiple symmetrized

measures for G, denoted by H(1) and H(2). Suppose H(1) and H(2) both satisfy (A1), (A2),

(A3), and are independent in the sense of (A4’). Then one can construct feasible structural

forms as in (9), and use H(2)X as instruments for v(1), and vice versa. To see why, note

that for all i and j (including the case with i = j):

E
[
(H(2)H(1))ij|G,X

]
= E

(∑
k ̸=i,j

H
(2)
ik H

(1)
kj

∣∣∣G,X)
=

∑
k ̸=i,j

E
(
H

(2)
ik H

(1)
kj

∣∣∣G,X) =
∑

k ̸=i,j
E
(
H

(2)
ik

∣∣∣Gik, X
)
E
(
H

(1)
kj

∣∣∣Gkj, X
)

=
∑

k ̸=i,j
(1− p(2))Gik(1− p(1))Gkj = (1− p(2))(1− p(1))

(
G2
)
ij
. (19)

46



Besides, under (A1) and (A2),

E
[
H(2)G|G,X

]
= E(H(2)|G,X)G = (1− p(2))G2. (20)

It then follows that

E[(H(2)X)′v(1)|G,X] = E(X ′H(2)ε|G,X) + λE

[
X ′H(2)

(
G− H(1)

1− p(1)

)
y

∣∣∣∣G,X]
= λE

[
X ′H(2)

(
G− H(1)

1− p(1)

)
MXβ

∣∣∣∣G,X]
= λX ′

(
E(H(2)G|G,X)− E(H(2)H(1)|G,X)

1− p(1)

)
MXβ = 0.

where the first two equalities are due to (A3), and the last holds because of (19) and (20)

under (A1), (A2), and (A4’).

Proof of Proposition 3. Define the following K-by-K moments involving (G,X) :

B1 ≡ E(X ′G2MX), B2 ≡ E(X ′GMX), B3 ≡ E(X ′G2X),

B4 ≡ E(X ′GX), B5 ≡ E(X ′X).

Under (A1), (A2), (A3), and (A4),

E(Z ′R) =

 E(X ′H2y) E(X ′HX)

E(X ′Hy) E(X ′X)

 =

 E[X ′H2M(Xβ + ε)] E(X ′HX)

E[X ′HM(Xβ + ε)] E(X ′X)


=

 (1− p)2E(X ′G2MXβ) (1− p)E(X ′GX)

(1− p)E(X ′GMXβ) E(X ′X)

 ≡

 (1− p)2B1β (1− p)B4

(1− p)B2β B5

 .

Suppose the 2K-by-(1 + K) matrix E(Z ′R) does not have full rank. By definition the

2K-by-2K square matrix  (1− p)2B1 (1− p)B4

(1− p)B2 B5
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must be singular. This implies [B1, B4;B2, B5] must also be singular because

det

 (1− p)2B1 (1− p)B4

(1− p)B2 B5

 = det(B5) det
[
(1− p)2B1 − (1− p)2B4(B5)

−1B2

]

= (1− p)2K det (B5) det(B1 −B4B
−1
5 B2) = (1− p)2K det

 B1 B4

B2 B5

 .

Therefore, non-singularity of [B1, B4;B2, B5] implies that E(Z ′R) has full rank.

AsM−λGM = I, we have GM = 1
λ
(M−I) and G2M = 1

λ
(GM−G) = 1

λ2
(M−I−λG).

We can write  B1 B4

B2 B5

 =

 1
λ
E(X ′(GM −G)X) E(X ′GX)

E(X ′GMX) E(X ′X)

 .

Adding the product of the 2nd row and (− 1
λ
) to the 1st row, we get:

 − 1
λ
E(X ′GX) E(X ′GX)− 1

λ
E(X ′X)

E(X ′GMX) E(X ′X)

 .

Adding the product of the 2nd column and ( 1
λ
) to the 1st column, we get

 − 1
λ2
E(X ′X) E(X ′GX)− 1

λ
E(X ′X)

E(X ′(GM + 1
λ
I)X) E(X ′X)

 =

 − 1
λ2
E(X ′X) − 1

λ
E(X ′M−1X)

1
λ
E(X ′MX) E(X ′X)

 .

Hence,

 B1 B4

B2 B5

 is non-singular iff

 E(X ′X) E(X ′M−1X)

E(X ′MX) E(X ′X)

 is non-singular.

By the same token, (A1), (A2), and (A4) imply that

E(Z ′Z) =

 E(X ′H2X) E(X ′HX)

E(X ′HX) E(X ′X)

 =

 (1− p)2E(X ′G2X) (1− p)E(X ′GX)

(1− p)E(X ′GX) E(X ′X)


=

 (1− p)2B3 (1− p)B4

(1− p)B4 B5

 .
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Similarly, the determinant of E(Z ′Z) is proportional to that of [B3, B4;B4, B5]. Therefore,

the non-singularity of [B3, B4;B4, B5] implies E(Z ′Z) has full rank.

Proof of Proposition 5. Under (A3), we have

E(Gy|X,G) = E[GM(Xβ +GXγ + ε)|X,G] = GM (Xβ +GXγ) ,

E(Hy|X,G) = E[HME (Xβ +GXγ + ε|X,G,H) |X,G] = E(H|G,X)M(Xβ +GXγ).

Under (A1) and (A2), E(H|G,X) = (1− p)G. It then follows that E(η|X,G) = 0. Note

E [ζ(X)′HHy|G,X] = ζ (X)′E(H2|G,X)M(Xβ +GXγ);

E[ζ (X)′HHX|G,X] = ζ (X)′E(H2|G,X)X;

E [ζ(X)′HGy|G,X] = ζ (X)′E(H|G,X)GM(Xβ +GXγ);

E[ζ (X)′HGX|G,X] = ζ (X)′E(H|G,X)GX.

As shown in the proof of Proposition 2, under (A4), E(H2|G,X) = (1 − p)2G. Because

E(H|G,X) = (1− p)G under (A1) and (A2), this implies E
[
ζ (X)′Hη

]
= 0.

B. Asymptotic property of two-step Estimator

In this section we sketch a proof of asymptotic distribution for p̂, λ̂, and β̂. We maintain

the following regularity conditions:

(REG) E(ψs) ̸= 0; 0 < p < 1; E(|Z ′
sWs(p)|) < ∞, E(|Z ′

sZs|) < ∞, E(||ξs||2) < ∞ where

ξs is defined below.

These conditions are needed for applying the law of large numbers, the central limit theo-

rem, and the delta method below.

First off, by the central limit theorem,

1√
S

 ∑
s

[
ψ̃s − E(ψ̃s)

]
∑

s [ψs − E(ψs)]

 d→ N (0,Ω),
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where Ω is the covariance matrix of (ψ̃s, ψs)
′. The delta method implies

√
S(p̂ − p)

d−→

N (0, DΩD′), where

D =

(
1

E(ψs)
,− E(ψ̃s)

E(ψs)2

)
.

The asymptotic linear presentation of p̂ is

√
S(p̂− p) = 1√

S

∑
s
τs + op(1),

where τs ≡ D ×
(
ψ̃s − E(ψ̃s), ψs − E(ψs)

)′
with E[τs] = 0.

Hence,
√
S(p̂− p)

d−→ N (0, E(τsτ
′
s)). Next, note that by construction,

√
S
(
θ̂ − θ

)
=

√
S
(
A′B−1A

)−1
A′B−1Z′ [Y −W(p̂)θ]

=
(
A′

0B
−1
0 A0

)−1
A′

0B
−1
0

1√
S
Z′ [Y −W(p̂)θ] + op(1), (21)

where the second “=” holds since A/S
p→ A0, B/S

p→ B0 and 1√
S
Z′ [Y −W(p̂)θ] = Op(1).

Recall the definition from the text:

F0 ≡ E [Z ′
s▽Ws(p)θ] =

λ
(1−p)2Z

′
sHsys, from ▽Ws(p) ≡ dWs(p̃)

dp̃
|p̃=p =

(
Hsys
(1−p)2 , 0

)
.

Let ∇W(p) be nS-by-(K + 1) matrix that stacks ▽Ws(p) over s ≤ S. Then,

1√
S
Z′ (Y −W(p̂)θ) = 1√

S
Z′ (Y −W(p)θ)−

(
1
S
Z′▽W(p)θ

)√
S(p̂− p) + op(1)

= 1√
S

∑
s
Z ′
s (ys −Ws(p)θ)− F0

(
1√
S

∑
s
τs

)
+ op(1)

= 1√
S

∑
s
(Z ′

svs − F0τs)︸ ︷︷ ︸
ξs

+ op(1). (22)

The first equality follows form a Taylor approximation around the true missing rate p; the

second from
(
1
S
Z′▽W(p)θ

) p−→ E[Z ′
s▽Ws(p)θ] and from the asymptotic linear representa-

tion of the estimator p̂; the third from ys = Ws(p)θ + vs. This proves the claim of limiting

distribution of
√
S(θ̂ − θ) in the text.
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