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Abstract

We study the identification and estimation of large network games in a linear-

quadratic utility framework, where each individual chooses a continuous action while

holding private information about its links and payoffs. Extending Galeotti, Goyal,

Jackson, Vega-Redondo and Yariv (2010), we build a tractable empirical model of

network games where the individuals are heterogeneous with private link and payoff

information, and characterize its unique, symmetric pure-strategy Bayesian Nash equi-

librium. We show that the parameters in individual payoffs are identified under “large

market” asymptotics, whereby the number of individuals increases to infinity on a sin-

gle large network. We also propose a consistent two-step m-estimator for individual

payoffs. Our method is distribution-free in that it does not require parametrization

of the distribution of shocks in individual payoffs. Monte Carlo simulation shows that

our estimator has good performance in moderate-sized samples.

Keywords: Identification, Estimation, Large games, Network games, Private link in-

formation

∗Eraslan: Rice University, Department of Economics, Houston, Texas. E-mail: eraslan@rice.edu. Tang:

Rice University, Department of Economics, Houston, Texas. E-mail: xun.tang@rice.edu. We are grateful

to Angelo Mele and Matthew Shum for helpful comments. We thank seminar and conference participants

at Vanderbilt University and “The Third Annual Conference on Network Science in Economics” and four
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1 Introduction

We study the identification and estimation of large Bayesian games on networks where in-

dividuals choose continuous actions in a linear-quadratic utility framework, while holding

private information about their links as well as payoffs. Private information on links is

prevalent in many empirical environments where networks involve large population. In such

cases, it is implausible to assume that each individual has complete information about the

full network structure. For example, Banerjee, Chandrasekhar, Duflo and Jackson (2014)

present evidence that members of rural communities in India had incomplete information

about the network structure based on the diffusion of gossips. The impact of private infor-

mation on links in network games has been studied theoretically by Galeotti, Goyal, Jackson,

Vega-Redondo and Yariv (2010) in their pioneering work. They establish the existence of

symmetric, monotone Bayesian Nash equilibria in such games and show that shifts in the de-

gree distribution due to increased connectivity have unambiguous effects on the equilibrium

behavior of individuals on the network.

Despite their empirical relevance and theoretical importance, large network games with

private links have not been investigated in the structural econometrics literature. Menzel

(2015) studies the identification and estimation of large Bayesian games where all individuals

are strategically interdependent with exchangeable generic types and actions conditional on

observed characteristics, and where private payoff shocks are conditionally independent across

players. In our model, individual types consist of their links and are therefore inherently

correlated between neighbors, thus inducing dependence between their actions in equilibrium.

We provide a new econometric framework for the structural analysis of large network

games with private information on links and payoffs. We extend Galeotti, Goyal, Jackson,

Vega-Redondo and Yariv (2010) to build a tractable empirical model of network games

where the individuals are heterogeneous with such private information.1 Under a quadratic

payoff specification (common in social interaction models), we show that the model has a

1The model in Galeotti et al (2010) focuses on homogeneous individuals with private information only

about their degrees. Each individual’s payoff depends on its degree and neighbors’ actions. In comparison,

our model accommodates a second source of private information in payoff shocks. This is because we consider

data environments where the links are reported in the data, and thus need to allow for unreported private

information to avoid degeneracy in the econometric model.
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unique, symmetric Bayesian Nash equilibrium. We then show the model is identified under

the concept of “large-market” asymptotics, whereby the number of networks is fixed and

small but the sample size increases with the number of individuals. Such an asymptotic

concept has been used in the estimation of large Bayesian games in different contexts. See,

for example, Leung (2015), Menzel (2015), Lin and Xu (2017), Kojevnikov and Song (2023)

and Xu (2018).2

Identification under such a concept for asymptotics is non-standard, because the sample

units cannot be considered as independent draws from any “population” that can be treated

as known as the sample size approaches infinity. Our identification strategy tackles this

difficulty through two steps. First, we define a set of asymptotic moments that can be

consistently estimated via sample analogs under the “large-market” asymptotics. Next, we

derive the structural link between these asymptotic moments and the model parameters, and

use it as the basis for our identification. We then introduce an index sufficiency condition

that reduces the dimension of arguments in the individuals’ endogenous peer effects, and

show that it is sufficient for recovering individual payoff parameters.

We propose a two-step estimator for individual payoffs. The first step estimates the

asymptotic moments. The second step proposes m-estimation for the payoff parameters.

This estimator is consistent under standard regularity conditions, and has several desirable

properties. It does not rely on parametric assumption on payoff shocks and exploits asymp-

totic uncorrelation between neighborhood profiles; its implementation also does not involve

any tuning parameters except those used in the first-step estimation. Monte Carlo simulation

shows our estimator has good performance in moderate-sized samples.

A formal characterization of the limiting distribution of our estimator under primitive

conditions, as well as construction of standard errors, would require elaborate conditions that

restrict the strength of network dependence. Several recent works, e.g., Leung (2021) and

Leung and Moon (2023), have tackled these issues of inference, such as normal approximation

in the presence of network dependence, in broad contexts. We do not address these challenges

of inference in this paper; instead we focus on introducing the framework of identification

2Menzel (2015) and Kojevnikov and Song (2023) study large Bayesian games in a general setup where

all individuals are strategically interlinked. Leung (2015) estimates large games in network formation when

individuals have private payoff shocks, rather than Bayesian games on a given network.
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using asymptotic moments, and establishing consistency of the two-step estimator. We do

acknowledge that an interesting direction for future research would be to specify primitive

conditions in our context that would lead to the form of weak dependence in Leung and

Moon (2023).

To reiterate, our empirical strategy is centered around the use of asymptotic moments,

i.e., probability limits of average individual types or choices that are interdependent in

equilibrium. By leveraging the symmetry and asymptotic uncorrelation between individual

units, we show how to use index or exclusion restrictions to recover the underlying payoffs

from asymptotic moments. This multi-step approach extends the classical framework for

identification with i.i.d. observations, and is generalizable beyond the current setting of

network games with private links, continuous choices and a linear quadratic utility.

Our model of private links can be applied in a variety of contexts where individual

outcomes are continuous and result from simultaneous strategic interactions within social-

economic groups or networks. Todd and Wolpin (2018) estimate a model of the effort deci-

sions by students and teachers in classrooms (groups). Their survey data include continuous

measurements of efforts (such as the number of hours per week spent on studying mathe-

matics, the number of days a student skipped a math class, and the percentage of time the

student paid attention in class). Giorgi, Frederiksen and Pistaferri (2020) use tax record and

matched employer-employee data to define social groups and estimate the peer effects on

individual consumption, which has continuous measurement. Broadly speaking, our model

can be fitted in similar settings where social groups are known to have a network structure,

and where there is need for relaxing the assumption on individual knowledge of network

links. We leave this as an interesting direction for future empirical research.

▶ Related Literature. Graham and Hahn (2005) study the identification and estimation

of a linear-in-means model of social interactions with unobserved group effects. Lee, Liu

and Lin (2010) estimate a social network model with peer, contextual and correlated effects,

using network structure as a source of identifying power. In comparison, our model is a large

simultaneous game with continuous choices and linear-quadratic utility, where individuals

have private knowledge of links as well as payoff shocks. In our case, the structural form for

individual choices in equilibrium is linear, but involves each individual’s endogenous, rational
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belief about other individuals’ choices. We establish how, in a single large network setting,

such beliefs relate to the asymptotic moments, and provide conditions for consistent esti-

mation of these moments using sample averages over the single network. These asymptotic

moments are then used to point identify the payoff parameters.

Bramoullé, Djebbari and Fortin (2009) and Blume, Brock, Durlauf and Jayaraman (2015)

establish identification results in Bayesian games where individuals have private payoff

shocks. Both papers maintain that the network structure is common knowledge among

all individuals. In addition, the methods proposed in these papers assume knowledge of the

reduced-form coefficients for a fixed, unknown network structure. The identification of such

reduced-form coefficients per se requires data to contain independent draws of outcomes

and explanatory variables generated from that fixed network of interest. To estimate these

reduced-form coefficients in practice, one needs a sample that consists of a large number of

repeated outcomes from the fixed network.

Xu (2018) and Lin and Xu (2017) estimate discrete-choice Bayesian games on large net-

works where individuals have private shocks in payoffs, but have common knowledge about

the complete network structure. They require “near-epoch” dependence between individual

actions in equilibrium in order to estimate the model. In comparison, we accommodate a flex-

ible information structure where individuals have private information about neighborhood

characteristics besides payoffs. This leads to different forms of Bayesian Nash equilibrium,

and hence qualitatively different structural equations that relate the asymptotic moments

to model parameters. We also allow for richer contextual effects in payoffs than these two

papers. Yang and Lee (2017) analyze social interactions where the conditional expecta-

tions about group members’ behaviors are heterogeneous. The individuals have asymmetric

private shocks but share common knowledge about the network/group structure. Canen,

Schwartz and Song (2020) applies a behavioral approach to model games on networks where

agents have partial observation of neighbor types. In comparison, the individual beliefs in our

model are formulated based on a common prior as is standard in simultaneous games with

incomplete information. Auerbach (2022) estimates a regression model where one covariate

is an unknown function of a latent driver of link formation in a network.

Our paper does not study the strategic formation of networks. This is a related but

different topic that has been studied extensively in the literature. Examples include Badev
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(2021), Boucher and Mourifié (2017), Chandrasekhar and Jackson (2021), Christakis, Fowler,

Imbens and Kalyanaraman (2020), de Paula, Richard-Shubik and Tamer (2018), Hsieh, Lee

and Boucher (2020), Mele (2017), Menzel (2015), Miyauchi (2016) and Sheng (2020). See

Chandrasekhar (2016) for an extensive review.

▶ Roadmap. In Section 2 we present the model and establish the existence and uniqueness

of pure-strategy Bayesian Nash equilibrium. In Section 3 we present our identification strat-

egy as the number of individuals approaches infinity while the number of observed networks

is fixed and small. In Section 4, we present a two-step consistent estimator. In Section 5,

we provide Monte Carlo simulation results. In Section 6 we conclude. Proofs are collected

in Appendix A.

2 The Model

Denote the finite set of individuals on a network by N , and let n ≡ #N denote its cardinality.

The network structure is summarized by the n-by-n matrix g ≡ (gij)ij∈N . For any i, j ∈ N ,

let gij ≡ 1 if i’s payoff is affected by j’s action, and gij ≡ 0 otherwise. By convention in

the literature, let gii ≡ 0. Define the set of neighbors for i by Ni ≡ {j ∈ N : gij = 1}.

Each individual has a vector characteristics xi, which has a discrete finite support X with

#X ≡ K. Let xNi
≡ (xj)j∈Ni

denote the characteristics of i’s neighbors.

Let τi ≡ (xi, Ni, xNi
, εi) summarize the information available to individual i, where εi ∈ R

is an idiosyncratic shock to i’s payoff. Each individual i ∈ N chooses a continuous action ai

from A = R; this rules out settings with discrete actions such as those in Lin and Xu (2017)

and Xu (2018). The payoff for each individual i from choosing ai is:

ui(ai, a−i, τi) ≡ h̃i(τi)ai −
1

2
a2i −

ϕ

2

∑
j∈Ni

w̃ij(τi)(ai − aj)
2, (1)

where ϕ > 0 and a−i ≡ (aj)j∈N\{i}; and w̃ij(τi) are positive, bounded peer effect weights that

i assigns to its own deviation from a neighbor j’s choice.3 The positive sign of ϕ means that

the individuals incur utility losses due to non-conformity with the actions of their neighbors.

That is, the last quadratic term in ui indicates the costs for deviation from group peers. The

3If ϕ = 0, then the model is reduced to n single-agent decisions, with the individuals making independent

decisions with no strategic interaction.
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function h̃i contributes to a “contextual effect” and the last term leads to a “peer effect”in

the terminology of Manski (1993). The second term reflects the direct costs of the action.

We maintain the following assumption about the information available to each individual.

Assumption 1 (Information) For each i ∈ N , (Ni, xNi
, εi) is privately known and unob-

served by other individuals j ̸= i.

The common prior for (τi)i∈N is given by a distribution function F , which is known to

all individuals. Let T denote the support of each τi.
4 A pure strategy for individual i is a

mapping from T to A. A pure-strategy Bayesian Nash equilibrium (p.s.BNE) is a profile of

pure strategies (si)i∈N such that:

si(τi) ∈ argmax
ai∈A

E[ui(ai, s−i(τ−i), τi) | τi] ∀i ∈ N,

where s−i(τ−i) = (sj(τj))j∈N\{i}. The expectation E integrates out τ−i ≡ (τj)j∈N\{i} with

respect to its conditional distribution given τi, as implied by the common prior F . Assuming

the order of integration and differentiation can be swapped, we use the first-order condition

for each i to derive the following best response to s−i ≡ (sj)j∈N\{i}:

Ri(τi; s−i) =
h̃i(τi) + ϕ

∑
j∈Ni

w̃ij(τi)E [sj(τj)| τi]
1 + ϕ

∑
j∈Ni

w̃ij(τi)
.

A p.s.BNE can be characterized through the following fixed-point equation:

si(τi) = Ri(τi; s−i) for all i ∈ N and τi.

An argument similar to Blume et al (2015) implies there exists a unique p.s.BNE in this

network game.

Theorem 1 (Uniqueness of p.s.BNE) Under Assumption 1, there exists a unique p.s.BNE.

We prove the theorem by showing that the best response mapping is a contraction. The

positive sign of ϕ means the individuals value conformity with peers. If ϕ = 0, then payoffs

in (1) would consist of no peer effects, thus reducing the model to single-agent choices.5

4Theorem 1 continues to hold when the support of τi differs across i ∈ N .
5Note the existence and uniqueness of equilibrium is immediate in this case, because each agent is maxi-

mizing a quadratic utility independent of each other with no interactions.
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The rest of this section focuses on an anonymous version of the game above, where

only the profile of characteristics (rather than actual identities) of neighboring individuals

affect an individual’s ex post payoffs and interim beliefs. We show that in such a context,

the unique p.s.BNE is symmetric (i.e., all individuals share the same pure strategy) and

anonymous (i.e., the equilibrium strategy only depends on the profile of characteristics but

not the actual identities). For each x ∈ X, let Ni,x ≡ {j ∈ Ni : xj = x} denote the set of

neighbors of i whose characteristic is x. Let ni,x ≡ #Ni,x for each x ∈ X; and let a K-vector

ni ≡ (ni,x)x∈X summarize the distribution of xj in the neighborhood Ni. By construction,∑
x∈X ni,x = #Ni.

We consider the class of games where individuals’ payoffs and interim beliefs depend on

some sufficient statistics of ni. Specifically, let π : NK → M be a function that summarizes

neighbor characteristics, with its range M being in the Euclidean space and encompassing

possible realized values under all sample sizes. For example, π(ni) ∈ M may be some

moment based on the empirical distribution of (xj)j∈Ni
, or may report censored frequencies

of neighbors with certain types. In our simulations in Section 5, we investigate two data-

generating processes with different forms of π(·). In one case, π(ni) returns the number of

neighbors with each type, censored at certain caps; in the other, it discretizes the average

deviation from neighbors’ characteristics. It is important to note that π(.) is a function of

ni but not of the specific identities of neighbors in Ni, and that this function does not vary

with sample size n. In what follows we use mi ≡ π(ni) as shorthand. In practice we choose

to define π(ni) as a lower-dimensional summary statistic of ni for tractability in estimation.

Assumption 2 (Symmetry and Sufficiency in Payoffs) (i) There exists h : X×M×R → R

such that h̃i(τi) = h(xi,mi, εi) for all i and τi, and E[h(xi,mi, εi)|xi = x,mi = m] exists for

all x ∈ X, m ∈M . (ii) For each i, w̃ij(τi) = w(xj, xi,mi)/ni,xj if j ∈ Ni, and w̃ij(τi) = 0 if

j /∈ Ni, where w(·) is a positive function with
∑

x∈X w(x, xi,mi) = 1 for all (xi,mi).

Assumption 2 includes direct restrictions on each individual’s payoffs as well as their

information set. It implies that individual payoffs and peer weights only depend on the

profile of neighbor characteristics, but not on neighbor identities. This condition leads to a

tractable structural model by practically reducing the complexity of each individual’s payoff

function, and helps to simplify the definition and use of asymptotic moments below. Later,
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for point identification of model primitives (Proposition 3 and 4), we further reduce the

dimension of arguments here through an index sufficiency in Assumption 8.

Condition (i) states that the contextual effect for an individual i is determined by its own

characteristics xi, its private shocks εi, and the profile of neighbor characteristics (xj)j∈Ni
.

Thus the specific identities of individuals in Ni do not matter for contextual effects.

Condition (ii) consists of two restrictions on the peer effect weights. First, each individual

i assigns equal weights to neighbors with the same characteristics xj. Second, these weights

are determined by the individual’s own characteristic xi, the neighbor’s characteristic xj,

and the summary of neighbor characteristics in Ni. Together, they imply the weights do not

depend on specific identities of the neighbors.

Under Assumption 2, the peer effect (third term) in (1) can be written as:

−ϕ
2

∑
{x:Ni,x ̸=∅}

w(x, xi,mi)∆i(x),

where ∆i(x) denotes the mean squared difference between i’s action and those of neighbors

with xj = x. That is, ∆i(x) ≡ 1
ni,x

∑
j∈Ni,x

(ai− aj)
2. It is worth noting that by construction

the form of the weight function wi(·) does not change with the sample size n, because of

the range of π(·) that defines mi. In what follows, we define as an individual i’s anonymized

information as

ti ≡ (xi,mi, εi), where mi ≡ π(ni).

In addition, we maintain an anonymity condition on the interim beliefs.

Assumption 3 (Anonymity in Common Prior) The common prior F is exchangeable in

the identities of individuals i ∈ N .6 Under this prior, the conditional distribution of tj given

τi and j ∈ Ni depends on τi only through (xj, xi,mi).

This condition restricts parts of the information available to the individuals (i.e., their

initial priors). It lends itself to a tractable structural model by practically reducing the

complexity of information processed by each individual.7

6A distribution of a random vector (Y1, Y2, ..., Yn) is exchangeable if its joint distribution is the same as

that of (Yρ(1), Yρ(2), ..., Yρ(n)) for any permutation ρ(.).
7We consider a single, large-network setting in the sample. In this case, the exact labels of individual

units are not relevant for the analysis, as long as each unit is assigned a unique label.
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Under Assumption 3, (xj, xi,mi) are sufficient statistics for i’s interim belief of a neighbor

j’s anonymized information tj. That is, while individuals may not know the full identities

of their second-order, indirect connections, they are likely to hold rational beliefs about

the characteristics of these indirect connections. Intuitively, such beliefs only relate to the

characteristics, but not identities, of the immediate neighbors. This demonstrates a similar

anonymity to that in h(·) under Assumption 2.

With a slight abuse of notation, we write i’s interim belief about tj conditional on τi and

j ∈ Ni compactly as F (tj|xj, xi,mi, j ∈ Ni) below so as to simplify notation. Exchangeability

of the prior also implies this interim belief is the same across all individuals, and thus does

not need to be indexed by i. Menzel (2015) used a similar exchangeability condition on

the individuals’ characteristics and private signals to estimate large Bayesian games. In

our context, an individual’s private information consists of both the payoff shocks and the

neighborhood profile mi.

In a symmetric p.s.BNE all individuals adopt the same pure strategy s, which maps from

an individual’s anonymized information ti to A and solves the following fixed-point equation:

s(ti) = r{s}(ti) for all ti, (2)

where r is the best response function implied by the first-order condition, and r{s} denotes

an operator on the space of symmetric pure strategies defined by:

r{s}(ti) = γh(ti) + (1− γ)
∑

{x:Ni,x ̸=∅}
w(x, xi,mi)E [s(tj)|xj = x, xi,mi, j ∈ Ni] , (3)

where γ ≡ 1/(1 + ϕ), and the peer (interaction) effects are weighted sums over neighbor

characteristics as represented in mi. Note that, for simplicity, we use the same notation s(·)

to denote symmetric pure strategies in (3), which only depend on an individual’s anonymized

information.

Corollary 1 (Unique symmetric p.s.BNE) Suppose Assumptions 1, 2 and 3 hold. Then the

unique p.s.BNE is symmetric, and the equilibrium strategies depend only on the anonymized

information.

The proof of this corollary is similar to that of Theorem 1 and is omitted for brevity. The

main idea is to show that r is a contraction mapping, and then apply the Banach Fixed-point

Theorem to show that s = r{s} has a unique solution.
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3 Identification

We now discuss the identification of parameters (γ, h, w) as the number of individuals ap-

proaches infinity while the number of observed networks is fixed and small. Such a dimension

of asymptotics differs qualitatively from standard cross-sectional econometric models.

Suppose a researcher collects data from a single network with #N = n individuals. The

data reports the choice ai, the characteristics xi and the neighbor information (Ni, xNi
)

for each single individual i ∈ N . Throughout this section, we maintain that such a data

set with #N = n individuals is a single, random draw from some data-generating process

(DGP) indexed by n. For each n, the DGP is summarized by a joint distribution Fn of the

n-tuple (τi)i∈Nn . This is the common prior and satisfies the exchangeability and anonymity

conditions in Assumption 3.

We establish the identification of the model via two steps. In the first step, we show

that the sample average of choices made by n observed individuals on the network converge

in probability to certain asymptotic moments as n → ∞. We then argue that the model

can not be identified from these moments without any parametric or shape restrictions on

the contextual effect, even when weights in the peer effects are known to the researcher. In

the second step, we show that under a mild restriction of index sufficiency on the individual

weights in peer effects the model parameters can be uniquely recovered from these asymptotic

moments. The identification strategy is constructive, and leads to a two-step M-estimator.

In this sense, our approach is an example of “extremum-based” identification, as defined in

Lewbel (2019).

3.1 Asymptotic moments

Let Nn denote a sequence of sets such that Nn ⊂ Nn′ for all n < n′. For each n, let En(.)

denote the expectation under Fn. First, we define the asymptotic moments to be used in our

identification analysis. Throughout this section we use
∑

i as shorthand for
∑

i∈Nn
, which

is a sum over the n individuals in Nn; and we use
∑

j ̸=i as shorthand for
∑

i∈Nn

∑
j∈Nn\{i},

which is a sum over n(n − 1) ordered pairs from Nn. We maintain the following condition

on idiosyncratic shocks in individual payoffs.
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Assumption 4 (Exogeneity) For all n and i, j ∈ Nn, the common prior Fn is such that the

payoff shock εj is independent from (εi, xi,mi, gij) conditional on (xj,mj).

This assumption states that conditioning on an individual j’s characteristics xj and

neighborhood profile mj purges any correlation between its payoff shock εj and neighbors’

characteristics or links. This exogeneity assumption requires that εj be conditionally inde-

pendent from any idiosyncratic noises that affect link formation. It fails, for example, if

the network formation process depends on unobservable variables correlated with εi. We

consider the case where the set of neighbor profiles M is discretized and finite.

Assumption 5 (Existence of Limits) For any x, x′ ∈ X, m,m′ ∈M ,

h∗(x,m) ≡ lim
n→∞

1
n

∑
i

En[h(ti)|xi = x,mi = m],

p∗(x,m) ≡ lim
n→∞

1
n

∑
i

En [1{xi = x,mi = m}] ,

q∗(m′|x′, x,m) ≡ lim
n→∞

1
n(n−1)

∑
j ̸=i

En(1{mj = m′}|xj = x′, xi = x,mi = m, gij = 1)

exist and p∗(x,m) ̸= 0.

Existence of the limit h∗(x,m) is a mild restriction on the conditional distribution of εi.

It holds, for example, if h(ti) is additively separable in εi and En(εi|xi = x,mi = m) = 0 for

all n. In Appendix B we provide an example of a random link formation process in which

p∗, q∗ exist.

The next proposition relates the parameters γ, w, h to asymptotic moments λ∗ and q∗.

Proposition 1 Suppose Assumptions 1, 2, 3, 4 and 5 hold. Then

λ∗(x,m) ≡ lim
n→∞

1
n

∑
i

En(ai|xi = x,mi = m) (4)

exists and

λ∗(x,m) = γh∗(x,m) + (1− γ)
∑
x′∈X

w(x′, x,m)

[ ∑
m′∈M

λ∗(x′,m′)q∗(m′|x′, x,m)

]
(5)

for all x ∈ X, m ∈M .
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Equation (5) is an empirical analog of the moments implied by p.s.BNE in (2), with

individuals’ interim expectation about others’ actions replaced by an expression that only

consists of estimable asymptotic moments. The double sum on the right-hand side of (5) is an

expectation of λ∗ with respect to a joint distribution over a neighbor’s characteristics x′,m′,

defined as w(., x,m) × q∗(.|., x,m). Such a distribution is an individual’s weighted interim

belief in the limit, because it applies the weights in peer effects to the limit of individual

interim beliefs about neighbors’ mj.

Next, we show that the asymptotic moments λ∗ and q∗ in (4) can be consistently estimated

using sample averages across individuals from a single network as n → ∞ under certain

condition of asymptotic uncorrelation. For any x ∈ X and m ∈M , let ιi(x,m) be shorthand

for 1{xi = x,mi = m}. LetCn andVn denote covariance and variance under Fn respectively.

Assumption 6 (Asymptotic Uncorrelation) For any x, x′ ∈ X and m,m′ ∈M ,

(i) Cn(ιi(x,m), ιj(x,m)) → 0 for all i ̸= j as n→ ∞;

(ii) Cn(ιi(x,m)ιj(x
′,m′)gij, ιk(x,m)ιℓ(x

′,m′)gkℓ) → 0 as n→ ∞ if {i, j} ∩ {k, ℓ} = ∅;

(iii) Vn [aiιi(x,m)] and Vn[(ιi(x,m)ιj(x
′,m′)gij] exist for all n, and are both o(n).

This assumption consists of several restrictions on the unconditional correlation between

arbitrary pairs of individuals, treating their characteristics and the network links as random

draws from a triangular array that is indexed by network size n. It requires that as the

network size increases, the correlation between the neighborhood profiles mi and mj for any

two individuals i and j diminishes, even though in a fixed sample two individuals i and j

may share common neighbors. Also note that these restrictions are not conditioning on i and

j being neighbors, and thus do not immediately rule out any pattern of homophily. These

conditions are justified in networks where all links are directed and formed independently.

Besides, in Appendix B we provide an example of a simple random Poisson network with

undirected links in which these restrictions hold under primitive conditions such as indepen-

dent, dyadic links form at diminishing rates while the expected number of neighbors for each

individual converges to constants as the network size grows. This rules out certain types of

dense networks. In general, these conditions also rule out scale-free networks as defined in

Caldarelli, Capocci, De Los Rios, and Muñoz (2002). More broadly speaking, this condition

may not hold if the neighbor profiles (mi,mj) for linked individuals, (i, j) with gij = 1, have
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persist correlation even as the network grows (as is the case with dyadic link formation with

constant rates).

The next proposition shows that λ∗ and q∗ can be estimated consistently as the number

of individuals on the single network in data approaches infinity (n→ ∞).

Proposition 2 Suppose Assumptions 1, 2, 3, 4, 5 and 6 hold. Then∑
i aiιi(x,m)∑
i ιi(x,m)

p−→ λ∗(x,m)

and ∑
j ̸=i ιj(x

′,m′)ιi(x,m)gij∑
j ̸=i 1{xj = x′}ιi(x,m)gij

p−→ q∗(m′|x′,m, x)

as n→ ∞ for any x, x′ ∈ X,m,m′ ∈M on the support of p∗.

A generic vector of parameters (γ′, h′, w′) is observationally equivalent to the actual pa-

rameter (γ, h, w) in the DGP based on the asymptotic moments λ∗ and q∗ if (γ′, h′, w′) satisfies

(5) almost surely [p∗], where λ∗, q∗ are identified as probability limits in Proposition 2. We

say (γ, h, w) is identified based on these asymptotic moments if there exists no other element

(γ′, h′, w′) in the parameter space that is observationally equivalent to (γ, h, w).

It is clear from (5) that (γ, h, w) can not be identified using these asymptotic moments λ∗

and q∗ without further restrictions. To see this, note that for any generic weight function w′

(not necessarily equal to the actual weight function w) there always exist γ′ and h′ such that

(5) holds almost surely [p∗], with λ∗, q∗ fixed and identified from the data. Similarly, for other

(γ′, h′) ̸= (γ, h), one may construct a weight function w′ that satisfies (5) by redistributing

weights across realized values of x′ conditional on each (x,m).

3.2 Preview of identification strategy

In this subsection we illustrate the main idea for identification using a simple example.

For the rest of Section 3, we maintain Assumptions 1-6, so that the asymptotic moments

are consistently estimable and are considered known for identification purpose. With this

established, our strategy for model identification is similar to the case with a large number of

independent static Bayesian games between a fixed number of players such as Bajari, Hong,

Krainer and Nekipelov (2010). That is, we also exploit some exclusion restrictions and rank

13



conditions in the structural form. Our conditions are invoked on peer effect weights, and

therefore specific to the context of network games.

The non-identification result mentioned above shows that the parameters can not be

recovered from asymptotic moments without further restrictions on the contextual effects h

and the weights in peer effects w. Thus we focus on a semiparametric model with conditional

mean restriction on the contextual effects.

Assumption 7 (Mean Contextual Effects) h(ti) = η(xi,mi; θ) + εi where η is known up to

a finite-dimension parameter θ and En(εi|xi,mi) = 0 for all n and xi ∈ X, mi ∈M .

This assumption states that the conditional mean of contextual effects given (xi,mi) is

known up to a finite-dimensional parameter θ. It is commonly used in econometric models

estimated by Non-linear Least Squares (NLS) or Generalized Method of Momments (GMM).

Under this condition, h∗(x,m) = η(x,m; θ). We show the model is identified under some

exclusion restriction on the weights in the peer effects as well as some rank condition on the

support of observables.

▶ Exclusion restriction. Suppose x ≡ (z, v) and has a discrete support X = Z×V where

Z ≡ {z(1), z(2)} and V ≡ {v(1), .., v(κ)}. By construction #X = 2κ ≥ 4. Also suppose that

w(x′, x,m) is a function of z and z′ alone.

For k, ℓ = 1, 2, let ωkℓ denote the weights for z = z(k) and z′ = z(ℓ), and let λk(v,m)

and ηk(v,m; θ) be shorthand for λ∗(z(k), v,m) and η(z(k), v,m; θ). Note the weights ωkl do

not depend on v because of the exclusion restriction introduced in the preceding paragraph.

Under this exclusion restriction, the structural link in Proposition 1 is reduced to

λ∗k(v,m) = γηk(v,m; θ) + (1− γ)
∑

ℓ=1,2
ωkℓ

∑
v′,m′

Q∗
kℓ(v

′,m′, v,m)λ∗ℓ(v
′,m′) (6)

for k = 1, 2, where the summation
∑

v′,m′ is over the supports V and M , and

Q∗
kℓ(v

′,m′, v,m) ≡
q∗(m′ | z′ = z(ℓ), v

′, z = z(k), v,m)

#V
for ℓ, k = 1, 2.

That is, Q∗
kℓ summarizes an individual i’s belief about a neighbor j’s own neighborhood profile

mj, based on i’s information (xj, xi,mi) and adjusted by the weights that i assigns in peer

effects. By construction, ωkℓQ
∗
kℓ(., ., v,m) is an individual i’s weighted interim belief about

v′,m′ and z′ = z(ℓ) conditional on (zi, vi,mi) = (z(k), v,m), as explained after Proposition 1.
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▶ Rank condition. To fix ideas, suppose (x,m) are discrete and denote λ∗k(.), ηk(., .; θ)

and Q∗
kℓ(., .) respectively by two column vectors λ∗k, ηk(θ) and a square matrix Q∗

kℓ, with each

component in λ∗k and ηk(θ) and each row and column in Q∗
kℓ corresponding to an element

(v,m) on the joint support V ×M . Let λ∗ ≡ [λ∗′1 , λ
∗′
2 ]

′, η(θ) ≡ [η1(θ)
′, η2(θ)

′]′. Then we can

write (6) as:

λ∗ = γη(θ) + (1− γ)Q∗
ωλ

∗, (7)

where

Q∗
ω ≡

 ω11Q
∗
11, ω12Q

∗
12

ω21Q
∗
21, ω22Q

∗
22

 .

Equation (7) consists of 2 × #V × #M equalities and involves unknown parameters γ, θ,

ω ≡ (ωkℓ)k,ℓ=1,2. as well as the identified asymptotic moments λ∗k(.) and q∗(.|.) (in Q∗
kℓ).

These equalites are “quasi-structural” in that they depend on the expected choices of ac-

tions λ∗k, which themselves are endogenous objects arising from the equilibrium. However,

by Proposition 2, both λ∗, q∗ are consistently estimable from sample averages and can be

considered known in identification.8

We now derive the rank conditions needed for uniquely recovering γ, θ, ω from (7). Sup-

pose there exists some other (γ′, θ′, ω′) ̸= (γ, θ, ω) that is observationally equivalent to

(γ, θ, ω). Then the right-hand side of (7) must remain the same when (γ, θ, ω) is replaced by

(γ′, θ′, ω′) based on the asymptotic moments λ∗ and q∗. This implies there exists a column

vector υk ∈ R4\{0} such that [ηk(θ
′), ηk(θ), Q

∗
k1λ

∗
1, Q

∗
k2λ

∗
2]υk = 0 for k = 1, 2. An intuitive

condition that prevent this from happening is:

“For any θ′ ̸= θ, [ηk(θ
′), ηk(θ), Q

∗
k1λ

∗
1, Q

∗
k2λ

∗
2] has full rank for k = 1, 2”. (8)

Thus this is a sufficient condition for identifying (γ, θ, ω) from the asymptotic moments.

In general it holds when the conditional mean contextual effects η is nonlinear in θ and

(x,m), and there is enough variation of (x,m) on the support. Also note that because the

functional form of ηk is known (up to θ) and λ∗k, Q
∗
kℓ are identified from Proposition 2, the

rank condition in (8) can be tested.

8The econometrics literature abounds in examples where structural models are identified using quasi-

structural equations which involve equilibrium outcomes. For instance, see Bajari, Hong, Krainer and

Nekipelov (2009) in the context of static discrete games with incomplete information; and Aguirregabiria

and Mira (2010) in dynamic games with Markovian perfect equilibria.
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▶ Special case: no peer effects (ϕ = 0). So far, we have assumed ϕ > 0. If instead

ϕ = 0, then the model would be reduced to single-agent decisions, and we would not be able

to identify the weights ωkl. Formally, if ϕ = 0, then the second term on the right-hand side

of (7) would disappear and we would not be able to recover ωkl under the rank conditions.

If a researcher does not know whether ϕ is strictly positive or zero, then a null hypothesis

ϕ = 0 can be tested by regressing individual actions ai on the sample analog of peer effects in

a model with some parametrization, such as that introduced later in (5), and then checking

the statistical significance of the coefficient in front of the latter.9

▶ Special case: linearity in parameters. The rank condition in (8) does not hold when

η is linear in θ. That is, ηk(θ) = ζkθk for all k = 1, 2, where ζk is a (#V ×#M)-by-dim(θk)

matrix of known functions of (v,m), and θk ̸= 0 is a vector of constant coefficients. In such

cases, [ζkθ
′
k, ζkθk] can not have full rank for any θ′k that is proportional to θk. Nevertheless

it is relatively straight-forward to adjust the argument above to derive the following rank

conditions for identifying (γ, θ, ω):

“[ζk, Q
∗
k1λ

∗
1, Q

∗
k2λ

∗
2] has full rank for k = 1, 2”. (9)

To see why, suppose there exists some (γ′, θ′, ω′) that is observationally equivalent to (γ, θ, ω).

Then there exists a column vector τk ∈ R3\{0} such that [ζk, Q
∗
k1λ

∗
1, Q

∗
k2λ

∗
2]τk = 0 for k = 1, 2.

Thus the rank condition (9) is sufficient for identification.

It follows from (7) that the reduced-form for asymptotic moments in equilibrium is:

λ∗ = γ[I − (1− γ)Q∗
ω]

−1

 ζ1θ1

ζ2θ2

 .

Hence the rank condition in (9) can be expressed in terms of model primitives:

“ [ζk, γQ
∗
k1(M11ζ1θ1 +M12ζ2θ2), γQ

∗
k2(M21ζ1θ1 +M22ζ2θ2)] has full rank for k = 1, 2”,

(10)

whereMkℓ for k, ℓ = 1, 2 are conformable submatrices partitioning the inverse of I−(1−γ)Q∗
ω.

▶ A Numerical Example. We conclude this preview with a numerical example that il-

lustrates the rank conditions. Let xi ≡ (zi, vi), where vi and zi are binary with supports

9Large-sample property of such test statistics would need to account for first-stage estimation errors in

the peer effects, as is typical in two-step M-estimation. We leave this as a direction for future research.
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{1, 2} and {z(1), z(2)} respectively. Define mi ≡ 1

{
#{j∈Ni:zj=z(1)}

#Ni
≥ 1

2

}
. That is, the con-

textual effect depends on the network structure only through the proportion of neighbors

with zj = z(1). Suppose η(xi,mi; θ) ≡ θdvimi if zi = z(d) for d = 1, 2, and suppose that the

weights in peer effects only depend on zj, zi alone. Let θ1 = 0.8, θ2 = 1.3, γ = 0.7, ω11 = 0.6,

ω12 = 0.4, ω21 = 0.3, ω22 = 0.7. Let

Q∗
kℓ =


0.15 0.40 0.25 0.20

0.15 0.40 0.25 0.20

0.40 0.10 0.30 0.20

0.40 0.10 0.30 0.20

∀k, ℓ = 1, 2,

where the (i, j)-entry in Q∗
kℓ corresponds to Q

∗
kℓ(v

′,m′, v,m) with (v,m), (v′,m′) being the

i-th and j-th element in {(1, 1), (1, 0), (2, 1), (2, 0)}. It is worth emphasizing that in our

specification of Q∗
kℓ above, we intentionally minimize the source of exogenous variation by

restricting q∗(m′ | z′, v′, z, v,m) to be invariant in (z′, z,m). Yet even in this scenario it is

straightforward to verify that the rank condition in (10) holds.

3.3 Formal results: index sufficiency

In this subsection we generalize and formalize the identification argument in Section 3.2.

Our method requires an index sufficiency condition on the weights in peer effects.

Assumption 8 (Index Sufficiency) There exist known indexes ψ : X → Ψ and φ : X×M →

Φ, where dim(Ψ) < dim(X) and dim(Φ) ≤ dim(X ×M), such that w(x′, x,m) = w(y′, y, m̃)

whenever ψ(x′) = ψ(y′) and φ(x,m) = φ(y, m̃) for all x, x′, y, y′ ∈ X and m, m̃ ∈M .

Index sufficiency is used frequently in semiparametric econometric models. (See Pow-

ell (1994) for further discussion.) In our context, Assumption 8 is decomposed into two

substantive restrictions. First, individuals with the same index φ(xi,mi) assigns weights to

neighbors in the same way. Second, neighbors with the same index ψ(xj) always receive the

same weight. An intuitive special case of such index sufficiency is the exclusion restriction

mentioned in Section 3.2 with with the indexes ψ(x′) and φ(x,m) being subvectors of x′ and

(x,m) respectively.
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Under this condition, we can reparametrize the weight function w as a function defined

over the lower-dimensional support of indexes. That is, there exists ω : Ψ× Φ → [0, 1] with∑
c∈Ψ ω(c, d) = 1 for all d ∈ Φ such that:

w(x′, x,m) =
ω(ψ(x′), φ(x,m))

#{x̃ : ψ(x̃) = ψ(x′)}
for all x′, x ∈ X and m ∈M .

Under Assumptions 7 and 8, the link between asymptotic moments and parameters in (5) is

λ∗(x,m) = γη(x,m; θ) + (1− γ)
∑

c∈Ψ
ω(c, φ(x,m))µ∗(c, x,m), (11)

where

µ∗(c, x,m) ≡
∑

{x′:ψ(x′)=c}
∑

m′∈M λ∗(x′,m′)q∗(m′|x′, x,m)

#{x̃ : ψ(x̃) = c}
.

Because the index function ψ is known, Proposition 2 implies that µ∗ is identified (and

consistently estimable) as n→ ∞.10

By definition, the true model elements (γ, θ, ω) in the data-generating process is identified

if the equality in (11) fails at least for some set of (x,m) with positive measure in p∗ whenever

(γ, θ, ω) is replaced by a different vector of parameters (γ̃, θ̃, ω̃) ̸= (γ, θ, ω).

To fix ideas, suppose #M < ∞ so that #Ψ < ∞ and #Φ < ∞. For each (x,m), let

µ∗(x,m) ≡ (µ∗(c, x,m))c∈Ψ be a row-vector. We say a random row-vector v has full rank

conditional on some event E (under a probability measure p) if there exists no column-vector

α ̸= 0 such that p{vα = 0 | E} = 1.

Assumption 9 (Rank Condition) For any θ̃ ̸= θ and any d ∈ Φ, [η(x,m; θ̃), η(x,m; θ),

µ∗(x,m)] has full rank conditional on φ(x,m) = d under p∗.

This condition requires there be sufficient variation over an individual’s private informa-

tion (x,m). Generalization to the case with #M=∞ would involve some form of “complete-

ness” condition on linear operators defined by integrals.

10To derive (11), use the reparametrized weights ω to write λ∗(x,m) as

γh(x,m) + (1− γ)
∑

c∈Ψ

∑
{x′:ψ(x′)=c}

ω(c,φ(x,m))
#{x̃:ψ(x̃)=c}

[∑
m′
λ∗(x′,m′)q∗(m′|x′, x,m)

]
= γh(x,m) + (1− γ)

∑
c∈Ψ

ω(c, φ(x,m))
∑

{x′:ψ(x′)=c}
∑
m′ λ

∗(x′,m′)q∗(m′|x′,x,m)

#{x̃:ψ(x̃)=c} ,

where the equality holds because ω(c, φ(x,m)) is constant over {x′ : ψ(x′) = c} and m′ ∈M .
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Proposition 3 Suppose Assumptions 7, 8 and 9 hold. Then (γ, θ, ω) are identified from the

asymptotic moments.

Assumption 9 is often satisfied when η is nonlinear in θ as well as (x,m). However,

the rank condition in Assumption 9 does not hold in a class of models that are linear in

parameters. These are models with η(x,m; θ) = ζd(x,m)′θd whenever φ(x,m) = d, where

the vector of functions ζd : X ×M → RLd , Ld < ∞ are known up to a finite-dimensional

parameter θd.

For example, ζd(x,m) ≡ [1, x, f(x,m)] for all d ∈ Φ, where x ∈ RDX and f(x,m) :

X×M → RDf is a vector of component-wise squared differences between x and the mean of

neighbor characteristics. Then η(x,m; θ) = θd,0 + xθd,X + f(x,m)θd,f whenever φ(x,m) = d,

with θd ≡ (θd,0, θd,X , θd,f ) and L = 1 + DX + Df . For such a class of models, Assumption

9 does not hold because for any θ̃d ̸= θd that is proportional to θd, [ζd(x,m)′θ̃d, ζd(x,m)′θd,

µ∗(x,m)] can not have full rank conditional on φ(x,m) = d regardless of the value of d. Our

next proposition shows that for such models (θ, γ, ω) is identified under different and yet

intuitive rank conditions.

Proposition 4 Suppose Assumptions 7 and 8 hold with η(x,m; θ) = ζd(x,m)′θd for all

(x,m) such that φ(x,m) = d, where ζd : X ×M → RLd is known, θd ̸= 0 and Ld < ∞ for

each d ∈ Φ. Then (γ, θ, ω) are identified from the asymptotic moments if for each d ∈ Φ,

[ζd(x,m), µ∗(x,m)] has full rank conditional on φ(x,m) = d under p∗.

4 Two-Step M-Estimator

Consider a sample that consists of n individuals on a network. Across individuals i =

1, 2, ..., n, the vector of individual characteristics and shocks (errors) (xi, εi) are drawn in-

dependently from a fixed distribution (which does not vary with the sample size). The

data-generating process satisfies the conditions on the error distribution, the link formation,

as well as the individual payoffs in Assumptions 1-7.

We propose a two-step estimator for parameters in individual payoffs. First, estimate

the asymptotic moments. Then, estimate the payoff parameters by matching the implied
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asymptotic moments with empirical analogs from the data.11 Throughout this section, we

maintain Assumptions 1 to 7 in Sections 2 and 3.

To fix ideas, we present the estimator for the example in Section 3.2, where the observed

characteristics are discrete (i.e., X = Z × V with Z ≡ {z(1), z(2)} and V ≡ {v(1), .., v(κ)} for

κ ≥ 2), and the weights in peer effects only depend on the binary characteristics zi of an

individual and its neighbors. Generalization to the cases with continuous covariates in Z×V

is complex and left for future research.

To simplify notation, we reparametrize the model as

βkℓ ≡ (1− γ)ωkℓ for k, ℓ ∈ {1, 2}.

In what follows, we use δ0 ≡ [γ0; β0; θ0] to denote the true parameters in the data-generating

process and let δ ≡ [γ; β; θ] denote a generic element in the parameter space D.

Partition the set of individuals Nn into Nn,(k) ≡ {i ∈ Nn : zi = z(k)} for k = 1, 2, and let

λ̂, q̂ be the non-parametric estimators for λ∗, q∗ in Proposition 2. Let ηi(θ) ≡ η(xi,mi; θ),

λ̂i ≡ λ̂(zi, vi,mi), q̂ℓ,i(m
′|v′) ≡ q̂(m′|z′ = z(ℓ), v

′, xi,mi) and

χ̂ℓ,i ≡ 1
#V

∑
v′,m′

q̂ℓ,i(m
′|v′)λ̂(z(ℓ), v′,m′).

Our two-step estimator is:

δ̂n ≡ argmin
δ∈D

Ĝn(δ)

with

Ĝn(δ) ≡ n−1
∑

i

[
λ̂i − γηi(θ)−

∑
k
1{zi = z(k)}

∑
ℓ
χ̂ℓ,iβkℓ

]2
.

This estimator is consistent under a set of conditions T1-T3 presented and discussed below.

T1 (Parameter Space) δ0 is in the interior of a compact parameter space D.

Compactness of D in T1 ensures that a minimum of the probability limit of the objective

function exists. That δ0 lies in the interior of the parameter space allows for Taylor series

expansion around the true parameter in the proof of consistency in Proposition 5 below.

11This procedure is reminiscent of an estimator that Hotz and Miller (1993) proposed for dynamic discrete

choice models in that they both requires estimation of certain moments in a first-step. In our case, the

second step consists of m-estimation based on our identification argument.
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T2 (Identification) For any δ ̸= δ0 in D, (6) does not hold for a set of (x,m) with positive

measure under p∗.

Condition T2 states that the model parameters are point identified from the structural

relation between these parameters and the recoverable asymptotic moments, which is sum-

marized in (6). In Section 3, we already offered a detailed discussion of identification, and

provided sets of sufficient conditions under which T2 is satisfied. Under T2, the probability

limit of the objective function in our m-estimator (introduced below) is uniquely minimized

at the true parameter.

T3 (Regular conditions) (i) For all k, l ∈ X, the asymptotic moments λ∗(·) and q∗(·|·) are

uniformly bounded over their domains. (ii) The mean contextual effect η(., .; θ) is continu-

ously differentiable in θ with a bounded gradient almost surely under p∗.

In the proof of estimator consistency below, we use the boundedness on the asymptotic

moments in T3 (i) to show the objective function converges in probability to its population

counterpart point-wise on the parameter space. The smoothness and boundedness conditions

on the contextual effects in T3 (ii) are then used for strengthening the result into a uniform

convergence (in probability) of the objective function.

Proposition 5 Suppose Assumptions 1 to 7 hold. Then δ̂n
p→ δ0 under the conditions T1,

T2, T3.

An alternative approach for two-step estimation would be as follows. First, use (5)

and iterative, forward-substitution to express λ∗ as an infinite series that depends on the

parameters and asymptotic moments that can be estimated from the data. Then use a

minimum-distance method to estimate the parameters by matching the estimated infinite

series with the estimate λ̂. Compared with our current approach, this alternative estimator

involves higher computation costs, and more complex conditions are needed in order to show

identification and consistency using its objective function.

In Appendix C, we discuss the asymptotic distribution of our two-step m-estimator. Our

goal in Appendix C is not so much to conduct formal inference as to offer a framework for

understanding and deriving the estimator’s asymptotic properties. A formal characterization

and derivation of the limiting distribution of our estimator under primitive conditions, as
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well as construction of valid standard errors, would require elaborate conditions that restrict

the strength of network dependence. We do not address these challenges in this paper.

Leung (2021) develops an inference procedure that is robust to general forms of weak

dependence in the data. His method uses resampled test statistics and does not depend

on the unknown correlation structure in the sample, with leading examples being various

forms of network dependence. Leung and Moon (2023) prove a central limit theorem for net-

work moments in a model of network formation with strategic interactions and homophilous

agents as a single large network in the sample grows. They show that a modification of

“exponential stabilization” conditions from the literature on geometric graphs provides a

useful formulation of weak dependence, which they use to establish an abstract central limit

theorem. They also derive primitive conditions for stabilization using results in branching

process theory, and discuss practical inference procedures. An interesting direction for fu-

ture research would be to specify primitive conditions in our context that could lead to the

form of weak dependence in Leung (2021) or Leung and Moon (2023) so that their inference

methods can be applied in our setting.

Generalization of this estimator to the case with continuous covariates in Z × V will

be complex. It typically requires us to use kernel or series estimators for the asymptotic

moments in the first step. Proof of consistency in such a case involves showing the uniform

convergence of these estimators of asymptotic moments over the support types and neighbor

profiles. We leave a full-fledged formal analysis for the case of continuous covariates for

future research.

5 Simulation

In this section we present simulation evidence for the performance of our two-step m-

estimator, using simulated samples under various designs of the DGP. The contextual effect

in (3) is parametrized as

γh(ti) = xiβx +miβm + ϵi,

where βx = 3.0, βm = 1.5, the error ϵi follows a zero-mean truncated normal distribution,

and the individual characteristic xi is uniformly distributed over a discrete support. The

peer effects in (3) is parametrized as 1 − γ = 0.8, with weights allocated equally among
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different types of neighbors. We experiment with two distinctive definitions of the sufficient

statistic for neighbor characteristics: (i) mi is a discretized value of 1
#Ni

∑
j∈Ni

|xj − xi|; and

(ii) the number of same-type neighbors censored above at 10.

For every design and sample size n considered, we simulate S = 200 independent samples,

each of which consists of observable characteristics xi and choices ai by n individuals on a

single network. In each sample, the individual characteristics are drawn independently

from a specified support X. The links between individuals are undirected, and are formed

independently with some probability that depends on individual characteristics. We study

two scenarios for each pair xi, xj: (a) the link formation probability pn(xi, xj) decreases as

the sample size n increases, and npn(xi, xj) converge to a constant; and (b) the link formation

probability is fixed p(xi, xj) and invariant as n→ ∞.

The individual choices under the symmetric pure-strategy Bayesian Nash equilibrium

are simulated using the following steps. First, use our specification of the DGP to calculate

individuals’ interim belief about mj conditional on xj, mi, xi and gij = 1. Next, plug in

this belief into the fixed-point characterization of equilibrium and solve for the endogenous

moment En(ai|xi,mi). (See the proof of Proposition 1 in Appendix A for details.) Then,

draw individual noises ϵi from the distribution specified and set ai = En(ai|xi,mi) + ϵi.

For each sample, we calculate our two-step m-estimator β̂x, β̂m, 1 − γ̂. No smoothing

parameter is required because of the discrete support for xi,mi. The tables below report

the empirical bias, variance and mean-squared errors (MSE) from S = 200 estimates. The

network sizes are set at n = 200, 400, 800.
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Table 1. Discretized mi; X = {0, 1}; npn → (10, 5, 10)

Case 1: ϵ ∼ N(0, 1) truncated at [−3/2, 3/2]

β̂x β̂m 1− γ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0164 0.0135 0.0138 0.1930 0.2098 0.2470 -0.0907 0.0314 0.0396

400 0.0106 0.0055 0.0056 0.1651 0.0953 0.1225 -0.0880 0.0189 0.0264

800 -0.0007 0.0036 0.0036 0.0369 0.0210 0.0224 -0.0432 0.0096 0.0115

Case 2: ϵ ∼ N(0, 1.5) truncated at [−2, 2]

β̂x β̂m 1− γ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0193 0.0251 0.0255 0.1886 0.2435 0.2791 -0.0910 0.0357 0.0439

400 0.0148 0.0111 0.0113 0.1046 0.1169 0.1279 -0.0738 0.0223 0.0277

800 -0.0082 0.0061 0.0061 0.0154 0.0434 0.0436 -0.0290 0.0171 0.0179

Note: The bias, variance and mean squared errors in this table are calculated using S =

200 independent samples of single networks with n individuals. Neighborhood profile

mi is defined as (#Ni)
−1 ∑

j∈Ni |xj − xi| rounded to the nearest multiple of 1
5 .

Table 1 reports the results for a design where xi is Bernoulli with equal probability andmi

is the discretization of the average neighbor characteristics (#Ni)
−1∑

j∈Ni
|xj − xi|, defined

by rounding this average to the nearest multiple of 1
5
. As the sample size increases, the

independent link-formation probability diminishes but converges to nonzero constants. For

simplicity in implementation, we set nPn{gij = 1|xi = xj = k} = 10 for k ∈ {0, 1} and

nPn{gij = 1|xi ̸= xj} = 5 for all n. The two panels in Table 1 show how the estimator’s

performance varies with the support and variance of individual noises.

The MSEs for three parameters decrease as n→ ∞, as the consistency in Proposition 5

implies. The MSEs are quite small even for a moderate sample size n = 800. The estimation

error in the contextual effect of mi appears to be greater than that of the peer effects τ and

individual effect of xi. The distribution of individual payoff noises ϵi affects the estimation
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accuracy, as the MSEs are greater for models with error terms that have higher variances.

Table 2: Censored mi; X = {0, 1}; npn → (10, 5, 20)

Case 1: ϵ ∼ N(0, 1) truncated at [−3/2, 3/2]

β̂x β̂m 1− γ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0460 0.0687 0.0708 0.0190 0.0047 0.0051 -0.1498 0.0127 0.0351

400 -0.0451 0.0267 0.0287 0.0111 0.0019 0.0020 -0.1130 0.0065 0.0193

800 0.0146 0.0152 0.0154 0.0089 0.0009 0.0010 -0.0890 0.0036 0.0116

Case 2: ϵ ∼ N(0, 1.5) truncated at [−2, 2]

β̂x β̂m 1− γ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0505 0.0762 0.0787 0.0214 0.0060 0.0064 -0.1534 0.0162 0.0397

400 -0.0375 0.0346 0.0360 0.0147 0.0017 0.0019 -0.1172 0.0075 0.0212

800 0.0047 0.0176 0.0176 0.0109 0.0009 0.0011 -0.0898 0.0041 0.0122

Note: The bias, variance and mean squared errors in this table are calculated using S =

200 independent samples of single networks with n individuals. For each i, the neighbor

profile mi is defined as the minimum of same-type neighbors and 10.

Table 2 reports the results for a similar model where the neighbor profile is defined as the

censored number of same-type neighbors. As before, the MSEs converge to zero as n → 0.

In contrast, the estimator for the contextual effect of mi is more accurate than the case

where mi is the discretization of average neighbor characteristics. This may be explained in

part by a richer variation in mi under this new specification with npn → (10, 5, 20) relative

to that in Table 1. While we do not provide a formal result about the rate of convergence

of our two-step estimator, the rate of convergence in the MSE in both Table 1 and Table 2

appears to be reasonably close to
√
n with few exceptions in the finite sample.
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Table 3: Censored mi; X = {0, 1}; npn → (20, 10, 20)

Case 1: ϵ ∼ N(0, 1) truncated at [−3/2, 3/2]

β̂x β̂m 1− γ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0349 0.0261 0.0273 0.0094 0.0020 0.0020 -0.0708 0.0033 0.0083

400 0.0255 0.0158 0.0165 0.0054 0.0011 0.0011 -0.0662 0.0021 0.0065

800 -0.0193 0.0093 0.0097 -0.0037 0.0004 0.0004 -0.0459 0.0010 0.0031

Case 2: ϵ ∼ N(0, 1.5) truncated at [−2, 2]

β̂x β̂m 1− γ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0446 0.0367 0.0387 0.0116 0.0037 0.0038 -0.0758 0.0062 0.0119

400 0.0313 0.0214 0.0224 0.0076 0.0015 0.0016 -0.0708 0.0037 0.0087

800 -0.0248 0.0113 0.0119 -0.0037 0.0007 0.0007 -0.0450 0.0015 0.0035

Table 3 reports results under a design almost identical to that in Table 2, except that

the sequence of link-formation probability now converges to a higher level (20, 10, 20). In

comparison with Table 2, the MSE in this case are slightly smaller. This pattern is related to

the fact that a higher link formation probability tends to increase the variation in neighbor

profile defined as the censored number of same-type neighbors. Similar to Tables 1 and 2,

the results in Table 3 demonstrates that an increase in the variance of noises leads to slightly

worse performance of the estimators.
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Table 4: Censored mi; X = {0, 1, 2}; npn → (10, 8, 5, 12, 8, 10)

Case 1: ϵ ∼ N(0, 1) truncated at [−3/2, 3/2]

β̂x β̂m 1− γ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0368 0.0228 0.0241 0.0587 0.0086 0.0121 -0.1501 0.0121 0.0346

400 0.0286 0.0120 0.0129 0.0362 0.0038 0.0051 -0.1381 0.0058 0.0249

800 0.0222 0.0044 0.0049 0.0244 0.0012 0.0018 -0.1146 0.0034 0.0165

Case 2: ϵ ∼ N(0, 1.5) truncated at [−2, 2]

β̂x β̂m 1− γ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0338 0.0259 0.0270 0.0611 0.0093 0.0130 -0.1517 0.0127 0.0357

400 0.0223 0.0138 0.0143 0.0375 0.0040 0.0054 -0.1394 0.0065 0.0259

800 0.0185 0.0049 0.0053 0.0237 0.0015 0.0021 -0.1149 0.0031 0.0163

Next, to see how an increase in the variation of individual characteristics could impact the

estimator performance, we consider a design where xi is uniformly distributed over {0, 1, 2}.

As in Table 1-3, we let the link formation probability to diminish as n→ ∞. For simplicity in

implementation, we set link formation probability as follows: nPn{gij = 1|xi = xj = 0} = 10,

nPn{gij = 1|xi + xj = 1} = 8, nPn{gij = 1 | |xi − xj| = 2} = 5, nPn{gij = 1|xi = xj = 1} =

12, nPn{gij = 1|xi + xj = 3} = 8 and nPn{gij = 1|xi = xj = 2} = 10 for all n.

Table 4 reports the results for such a design with mi defined as the censored number of

same-type neighbors. Compared with Table 3, the MSEs for βm and τ , or the contextual and

endogenous effects of mi, are both higher while that for βx, the marginal effect of individual

characteristics, is slightly smaller. We interpret such a pattern as the result of an interaction

of two immediate consequences of a larger support of X: on the one hand, a richer support

for individual characteristics provides more sources of variation for recovering the parameter;

on the other hand this increases the curse of dimensionality in that for a given sample size

n there are fewer observations (individuals) that can be used to estimate the asymptotic
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moments in the first step (both of which condition on individual characteristics).

Table 5: Discretized mi; X = {0, 1}; fixed p = (0.6, 0.4, 0.6)

Case 1: ϵ ∼ N(0, 1) truncated at [−3/2, 3/2]

β̂x β̂m 1− γ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0286 0.0572 0.0580 0.2388 1.0166 1.0736 0.1810 0.0510 0.0838

400 0.0178 0.0094 0.0097 -0.1048 0.6867 0.6977 0.0980 0.0263 0.0359

800 0.0080 0.0045 0.0046 -0.0083 0.2713 0.2782 0.0260 0.0177 0.0184

Case 2: ϵ ∼ N(0, 1.5) truncated at [−2, 2]

β̂x β̂m 1− γ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0475 0.0940 0.0963 -0.0622 2.2340 2.2378 0.2771 0.0826 0.1593

400 -0.0300 0.0140 0.0149 -0.0117 1.1734 1.1736 0.1503 0.0467 0.0692

800 -0.0155 0.0090 0.0092 0.0053 0.8007 0.8007 0.0201 0.0303 0.0307

Up to now we have only considered the designs where the link formation probabality

varies with the sample size n. The last two tables of this section, Tables 5 and 6, report the

simulation results in designs where the links are conditionally independently formed with

fixed probability that is invariant with n. In both designs, the neighbor profiles are defined

as the discretized average neighbor characteristic (as in Table 1). The two designs differ in

the support of xi.

The main takeaways from Tables 5 and 6 are as follows. These tables demonstrate evi-

dence of convergence of MSEs for all three estimators under a fixed probability design. While

the estimation error for β̂x and 1− γ̂ is comparable to their counterparts under convergent

link formation probability (in Table 1), the MSEs for β̂m are greater. We conjecture that

this distinction happens because an increasing sample size n has different implication for the

distribution of neighbor profile mi under two paradigms of fixed or convergent link formation

probabilities.
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Table 6: Discretized mi; X = {0, 1, 2}; fixed p = (0.6, 0.4, 0.3, 0.6, 0.4, 0.6)

Case 1: ϵ ∼ N(0, 1) truncated at [−3/2, 3/2]

β̂x β̂m 1− γ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0124 0.0250 0.0251 -0.0646 0.8372 0.8414 0.3398 0.0312 0.1467

400 0.0108 0.0026 0.0027 -0.0754 0.4497 0.4554 0.1202 0.0077 0.0221

800 -0.0046 0.0012 0.0012 0.0312 0.3069 0.3079 -0.0633 0.0053 0.0093

Case 2: ϵ ∼ N(0, 1.5) truncated at [−2, 2]

β̂x β̂m 1− γ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 -0.0206 0.0265 0.0269 -0.1845 1.2083 1.2423 0.3431 0.0335 0.1512

400 -0.0113 0.0057 0.0058 -0.0968 0.8013 0.8106 0.1403 0.0128 0.0325

800 0.0045 0.0025 0.0025 0.0191 0.6374 0.6377 -0.1225 0.0092 0.0242

6 Concluding Remarks

Directions for future research include: prediction of counterfactual outcome when peer

weights are assigned differently or higher-order neighbors are allowed to impact individual

incentives; the use of higher moments of individual actions in identification and estimation;

estimation when state variables are continuous; and richer models where network formation

is endogenized along with individual actions.

The model and estimation method we propose in this article can be used to analyze

individual incentives in a variety of environments. Examples include individual or household

choices of consumption or investment levels in large social networks. Yet another interesting

direction for future research would be the empirical analyses of individual preferences and

interactions under such scenarios.
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Appendix

A. Proofs in Section 3

Proof of Theorem 1. Let S denote the set of bounded functions on T n taking values in

An, where T denotes the support of τi as in the text. (The boundedness condition can be

dispensed; the proof applies when S is a complete metric space.) For s, s′ ∈ S, let s ≤ s′

denote s(τ) ≤ s′(τ) for all τ ∈ T n. For any s ∈ S, let ∥s∥ = maxi sup{|si(τi)| : τi ∈ T}, i.e.,

∥.∥ is the supremum norm. Note S with the supremum norm is a complete metric space.

Define a mapping R : S → S as

R(s)i(τi) ≡ Ri(τi; s−i) for all i ∈ N .

First note that R(s) ∈ S for any s ∈ S, and so R maps S to itself. To establish existence of

a unique p.s.BNE, we show that R satisfies the contraction property. That is, there exists

c ∈ (0, 1) such that ∥R(s) − R(s′)∥ ≤ c∥s − s′∥ for any s, s′ ∈ S. An application of the

Banach Fixed Point Theorem then proves the existence of a unique p.s.BNE.

To show that R satisfies the contraction property, fix any s, s′ ∈ S. Note that for any

i ∈ N and τi ∈ T , we have:

|Ri(τi; s−i)−Ri(τi; s
′
−i)| =

ϕ
∑

j∈Ni
w̃ij(τi)

∣∣E [
sj(τj)− s′j(τj)

∣∣ τi]∣∣
1 + ϕ

∑
j∈Ni

w̃ij(τi)

≤ (1− γ̃)∥s− s′∥, (12)

for a constant γ̃ ∈ (0, 1), where the inequality is due to the sup norm, ϕ > 0 and boundedness

of postive peer effect weights w̃ij(τi). By definition, ∥R(s) − R(s′)∥ = sup{|Ri(τi; s−i) −

Ri(τi; s
′
−i)| : τi ∈ T} for some i ∈ N . Hence the desired result follows from (12). □

Proof of Proposition 1. Under Assumptions 1, 2 and 3, a unique symmetric pure-strategy

Bayesian Nash equilibrium exists in each data-generating process indexed by n, and

ai = s(ti) = γh(ti) + (1− γ)
∑

x′∈X
w(x′, xi,mi)En[s(tj)|xj = x′, xi,mi, gij = 1].

Define λn(x,m) ≡ 1
n

∑
iEn(ai|xi = x,mi = m) = En(ai|xi = x,mi = m), which does not

vary with the specific identity of an individual i because of the symmetry in Assumption 2 and
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exchangeability in Assumption 3. Likewise, let h̄n(x,m) ≡ 1
n

∑
iEn [h(ti)|xi = x,mi = m] =

En [h(ti)|xi = x,mi = m]. Thus by construction,

λn(x,m) = γh̄n(x,m) + (1− γ)
∑
x′∈X

w(x′, x,m)En[s(tj)|xj = x′,mi = m,xi = x, gij = 1].

(13)

For any n, the law of total expectation and Assumption 4 imply

En[s(tj)|xj = x′, xi = x,mi = m, gij = 1]

=
∑
m′∈M

En(aj|mj = m′, xj = x′)En(1{mj = m′}|xj = x′, xi = x,mi = m, gij = 1)

=
∑
m′∈M

λn(x
′,m′)qn(m

′|x′,m, x), (14)

where qn(m
′|x′, x,m) ≡ 1

n(n−1)

∑
j ̸=iEn(1{mj = m′}|xj = x′, xi = x,mi = m, gij = 1). The

second equality holds because En(1{mj = m′}|xj = x′, xi = x,mi = m, gij = 1) does not

depend on specific identities of individuals i and j under Assumptions 2 and 3. Combining

(13) and (14), we write λn as the solution to a fixed-point equation that depends on (h̄n, qn).

That is,

λn = Γ(λn; h̄n, qn), (15)

where Γ(.; h̄n, qn) is a self-map over the set of bounded and continuous functions with domain

X×M , and

Γ(λn; h̄n, qn)(x,m) ≡ γh̄n(x,m)

+ (1− γ)
∑

x′∈X
w(x′, x,m)

∑
m′∈M

λn(x
′,m′)qn(m

′|x′, x,m).

The solution is unique because, for any h̄n and qn, the map Γ(.; h̄n, qn) has a contraction

property under the sup norm.12

Next, let h and h̃ denote generic functions of (xi,mi) determining the contextual effects

for i; let q and q̃ denote generic density (probability mass) functions of m′ given x′, x,m. We

now show that for any c̄ > 0 there exists c1, c2 > 0 so that

∥h̃− h∥ ≤ c1 and ∥q̃ − q∥ ≤ c2 imply ∥λ̃− λ∥ ≤ c̄, (16)

12The proof of the contraction property of Γ(.; h̄n, qn) is similar to that of Theorem 1, and omitted for

brevity.
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where ∥.∥ denotes the sup norm over the respective domains, and λ and λ̃ are the unique

solutions in λ = Γ(λ;h, q) and λ̃ = Γ(λ̃; h̃, q̃) respectively. To verify (16), recursively substi-

tute λ and λ̃ into Γ(λ;h, q) and Γ(λ̃; h̃, q̃) and use the fact that “γ ∈ (0, 1), w(., x,m) ≥ 0

and
∑

x′∈X w(x
′, x,m) = 1 for all x ∈ X,m ∈M”.

It then follows from (16) that the solution to the fixed point problem λ = Γ(λ;h, q)

is continuous in (h, q). Under Assumption 5, h̄n → h∗ and qn → q∗ given the sup norm.

Consequently, the sequence of solutions λn = Γ(λn; h̄n, qn) converges to the unique λ∗ that

solves λ∗ = Γ(λ∗;h∗, q∗). □

Proof of Proposition 2. Fix some positive integer n ∈ N++, x ∈ X and m ∈ M . The

Chebychev’s Inequality implies that for any constant c > 0,

Pn

{∣∣∣∣ 1n∑
i
ιi − En

(
1

n

∑
i
ιi

)∣∣∣∣ ≥ c

}
≤ c−2Vn

(
1

n

∑
i
ιi

)
, (17)

where Pn is the probability measure associated with Fn, and Vn denotes the variance under

Fn. In what follows, let σ2
n,i be a shorthand for Vn(ιi); and let Cn,i,j be a shorthand for

Cn(ιi, ιj), which is the covariance between ιi and ιj under Fn. By the exchangeability and

anonymity of Fn in Assumption 3, σn,i does not depend on i and Cn,i,j does not depend on

i and j. Therefore the right-hand side of (17) can be written as

c−2n−2
[∑

i
σ2
n,i +

∑
j ̸=i

Cn,i,j

]
=
nσ2

n,i

n2c2
+
n(n− 1)Cn,i,j

n2c2
. (18)

By the first asymptotic uncorrelation condition in Assumption 6, the two terms on the right-

hand of (18) converge to 0 as n→ ∞. Thus 1
n

∑
i ιi−

1
n

∑
iEn (ιi)

p−→ 0 as n −→ ∞. Under

Assumption 5, this implies 1
n

∑
i ιi(x,m)

p−→ p∗(x,m) as n −→ ∞.

Next, recall that ai is a function of (xi,mi, εi) in p.s.BNE. By the law of total covariance,

Cn(aiιi(x,m), ajιj(x,m)) → 0 under conditional independence in Assumption 4 and the first

asymptotic uncorrelation condition in Assumption 6. It follows from a similar argument

using Chebychev’s Inequality that 1
n

∑
i aiιi −

1
n

∑
iEn (aiιi)

p−→ 0. Under Assumption 5

and Proposition 1, the limit of 1
n

∑
iEn (aiιi) as n→ ∞ exists. By exchangeability of Fn in

Assumption 3 both En (ιi) and En (aiιi) do not vary across the identities of individuals i. It

then follows from the Slutsky’s Theorem that

1
n

∑
i aiιi(x,m)

1
n

∑
i ιi(x,m)

p−→ limñ→∞ Eñ[aiιi(x,m)]

limñ→∞Eñ[ιi(x,m)]
= lim

ñ→∞

Eñ[aiιi(x,m)]

Eñ[ιi(x,m)]
= λ∗(x,m) (19)
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for all x,m on the support of p∗.

We now prove the second claim in the proposition. Fix x, x′ ∈ X and m,m′ ∈ M . In

what follows, let ι′j, ιi be shorthand for ιj(x
′,m′), ιi(x,m) respectively. Define ξij ≡ (ι′jιigij +

ι′iιjgji)/2 so that ξij = ξji and
1

n(n−1)

∑
j ̸=i ι

′
jιigij =

2
n(n−1)

∑
i

∑
j>i ξij by construction. By

the Chebychev Inequality, for any constant c > 0,

Pn

{∣∣∣ 2
n(n−1)

∑
j ̸=i

ξij − En

(
2

n(n−1)

∑
j ̸=i

ξij

)∣∣∣ ≥ c
}
≤ c−2Vn

(
2

n(n−1)

∑
j ̸=i

ξij

)
,

where the right-hand side is

4
c2n2(n−1)2

∑
j>i

∑
t>l

Cn (ξij, ξlt) .

By construction, this quadruple sum consists of
(
n
2

)
×

(
n
2

)
= 1

4
(n4 − 2n3 + n2) terms. These

include
(
n
2

)
= 1

2
(n2 − n) variance terms Vn (ξij),

(
n
2

)
×

(
n−2
2

)
= 1

4
(n4 − 6n3 + 11n2 − 6n)

covariance terms Cn (ξij, ξlt) in which the unordered pairs {i, j} and {l, t} do not over-

lap, and
(
n
2

)
×

((
n
2

)
−

(
n−2
2

)
− 1

)
= n3 − 3n2 + 2n covariance terms Cn (ξij, ξlt) in which

the two pairs {i, j} and {l, t} share exactly one individual in common. Note that Vn (ξij)

and Cn (ξij, ξlt) are bounded for all {i, j} and {l, t}. Furthermore, the covariance term

Cn (ξij, ξlt) with {i, j} ∩ {l, t} = ∅ does not vary with the identities {i, j, l, t} due to the

anonymity of common prior in Assumption 3. Under the asymptotic uncorrelation con-

dition in Assumption 6, Cn (ξij, ξlt) → 0 as n → ∞ if {i, j} ∩ {l, t} = ∅. Therefore

4
c2n2(n−1)2

∑
j>i

∑
l>tCn (ξij, ξlt) → 0 as n→ ∞. Hence 1

n(n−1)

∑
j ̸=i[ι

′
jιigij−En(ι

′
jιigij)]

p→ 0.

By a similar argument, 1
n(n−1)

∑
j ̸=i[1{xj = x′}ιigij − En (1{xj = x′}ιigij)]

p→ 0. Under

our condition in Assumption 5, limñ→∞Eñ

(
ι′jιigij

)
exists and limñ→∞Eñ (1{xj = x′}ιigij)

is non-zero. The second convergence result in the proposition follows from an argument

analogous to (19) under the exchangeability in Assumption 3 and the existence of the limits

q∗ in Assumption 5. □

Proof of Proposition 3. Suppose (θ, γ, ω) is observationally equivalent to some different vec-

tor of parameters (θ̃, γ̃, ω̃) based on asymptotic moments in (11). This means (11) holds al-

most surely p∗ when (γ, θ, ω) is replaced by (γ̃, θ̃, ω̃). For each d ∈ Φ, let ω(d) ≡ (ω(c, d))c∈Ψ,

which is a column-vector of weights assigned over Ψ conditional on φ(x,m) = d. Likewise,

define ω̃ using ω̃(., .). That is, for every d ∈ Φ,

γη(x,m; θ) + (1− γ)µ∗(x,m)ω(d) = γ̃η(x,m; θ̃) + (1− γ̃)µ∗(x,m)ω̃(d) (20)
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whenever φ(x,m) = d.

Consider the following cases. Case (i): θ = θ̃ and (γ, ω) ̸= (γ̃, ω̃). Then (20) implies

that for each d ∈ Φ, [η(x,m; θ), µ∗(x,m)]α(d) = 0 whenever φ(x,m) = d, where α(d) ≡

[γ− γ̃, (1−γ)ω(d)′− (1− γ̃)ω̃(d)′]′. Because (γ, ω) ̸= (γ̃, ω̃), the vector α(d) must be nonzero

at least for some d ∈ Φ. This implies that at least for some d ∈ Φ, [η(x,m; θ), µ∗(x,m)] does

not have full rank conditional on φ(x,m) = d. Case (ii): θ ̸= θ̃ and (γ, ω) = (γ̃, ω̃). Then (20)

implies η(x,m; θ) = η(x,m; θ̃) almost everywhere p∗. Case (iii): θ ̸= θ̃ and (γ, ω) ̸= (γ̃, ω̃).

Then (20) implies that for every d ∈ Φ,

[η(x,m; θ), η(x,m; θ̃), µ∗(x,m)]b(d) = 0

whenever φ(x,m) = d, where b(d) ≡ [γ,−γ̃, (1− γ)ω(d)′ − (1− γ̃)ω̃(d)′]′. By construction,

b(d) is non-zero for all d. Thus (20) implies that for each d ∈ Φ, [η(x,m; θ), η(x,m; θ̃),

µ∗(x,m)] does not have full rank conditional on φ(x,m) = d.

Each of these cases of observational equivalence implies the following condition: “There

exists θ̃ such that at least for some d ∈ Φ, [η(x,m; θ), η(x,m; θ̃), µ∗(x,m)] does not have

full rank conditional on φ(x,m) = d under p∗”. It then follows that under Assumption 9,

(θ, γ, ω) is not observationally equivalent to any (θ̃, γ̃, ω̃) ̸= (θ, γ, ω). □

Proof of Proposition 4. Suppose (θ, γ, ω) is observationally equivalent to some other (θ̃, γ̃, ω̃).

This implies that for each d ∈ Φ, [ζd(x,m), µ∗(x,m)]α(d) = 0 when φ(x,m) = d, where

α(d) ≡ [γθd− γ̃θ̃d, (1− γ)ω(d)′− (1− γ̃)ω̃(d)′]′. Consider two cases. Case (i): ω = ω̃. In this

case, either γ ̸= γ̃ or θd ̸= θ̃d at least for some d ∈ Φ. Otherwise (θ, γ, ω) would be identical

to (θ̃, γ̃, ω̃). Hence at least for some d, the two terms γθd− γ̃θ̃d and (1−γ)ω(d)′−(1− γ̃)ω̃(d)′

can not be zero simultaneously. Thus α(d) is a non-zero vector for all d. This implies that at

least for some d ∈ Φ, [ζd(x,m), µ∗(x,m)] does not have full rank conditional on φ(x,m) = d.

Case (ii): ω ̸= ω̃. In this case, ω(d) ̸= ω̃(d) at least for some d. It then follows that

(1 − γ)ω(d) − (1 − γ̃)ω̃(d) is a non-zero vector at least for some d, regardless of whether

γ ̸= γ̃. This implies that at least for some d ∈ Φ, [ζd(x,m), µ∗(x,m)] does not have full

rank conditional on φ(x,m) = d. Therefore, if [ζd(x,m), µ∗(x,m)] has full rank conditional

on φ(x,m) = d for all d ∈ Φ, then (θ, γ, ω) is not observationally equivalent to any other

(θ̃, γ̃, ω̃). □
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Proof of Proposition 5. Let
∑

x,m,
∑

k,
∑

ℓ be shorthand for
∑

x∈X,m∈M ,
∑

k=1,2,
∑

ℓ=1,2

respectively. For each δ ∈ D, let

G0(δ) ≡
∑

x,m
p∗(x,m)

[
λ∗(x,m)− γη(x,m; θ)−

∑
k
1{z = z(k)}

(∑
ℓ
χ∗
ℓ(x,m)βkℓ

)]2
,

where

χ∗
ℓ(x,m) ≡ 1

#V

∑
v′,m′

λ∗(v′, z(ℓ),m
′)q∗(m′|v′, z′ = z(ℓ), x,m).

Define G̃n(δ) ≡ n−1
∑

iΥi(δ) ≡ Υn(δ), with

Υi(δ) ≡ Υ(xi,mi; δ) ≡ [λ∗i − γηi(θ)−
∑

k
1{zi = z(k)}

∑
l
χ∗
l,iβkl]

2,

where λ∗i ≡ λ∗(xi,mi) and χ∗
l,i ≡ χ∗

l (xi,mi). For every fixed δ, apply a first-order Taylor

expansion of Ĝn(δ) around λ∗i and χ∗
l,i. By bounded asymptotic moments in T3-(i) and

Proposition 2, Ĝn(δ)− G̃n(δ)
p→ 0 for all δ. Next, by the Chebychev’s Inequality,

Pn

{∣∣Υn(δ)− En

[
Υn(δ)

]∣∣ ≥ c
}
≤ c−2Vn

[
Υ(δ)

]
for any constant c > 0.

For any fixed δ, let σ̃2
n,i, C̃n,i,j be shorthand for Vn[Υi(δ)], Cn[Υi(δ),Υj(δ)] respectively. By

the exchangeability and anonymity of Fn in Assumption 3, σ̃n,i, C̃n,i,j are invariant in the

subscripts i, j. Hence, the right-hand of the Chebychev’s inequality above is:

c−2n−2
[∑

i
σ̃2
n,i +

∑
j ̸=i

C̃n,i,j

]
=
nσ̃2

n,i

c2n2
+
n(n− 1)C̃n,i,j

c2n2
.

With σ̃2
n,i < ∞, the first term on the right-hand side converges to zero as n → ∞. Recall

that, under Assumption 6, 1{(xi,mi) = (x,m)} and 1{(xj,mj) = (x,m)} are asymptotically

uncorrelated for all values (x,m). Hence the arguments in Υ(·, ·; δ), i.e., (xi,mi), are asymp-

totically independent across individuals i, j. Consequently, the second term on the right-hand

side also converges to zero as n → ∞. It then follows that Υn(δ) − En

[
Υn(δ)

] p→ 0 for all

δ. Next, note:

En

[
Υn(δ)

]
= En

[
n−1

∑
i

∑
(x,m)∈X×M

1{(xi,mi) = (x,m)} ×Υ(x,m; δ)

]
=

∑
(x,m)∈X×M

{
n−1

∑
i
En [1{(xi,mi) = (x,m)}]

}
×Υ(x,m; δ)

→
∑

(x,m)∈X×M
p∗(x,m)×Υ(x,m; δ) ≡ G0(δ),

where the summation
∑

(x,m)∈X×M is over all values in the join support of (xi,mi), and the

convergence follows from the definition of p∗ in Assumption 5.
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For notational convenience, let 1k,i ≡ 1{zi = z(k)},

Ĥi ≡ [11,iχ̂1,i, 11,iχ̂2,i, 12,iχ̂1,i, 12,iχ̂2,i]

and

q̄i(θ) ≡ λ̂i − γηi(θ)−
∑

k
1k,i

∑
ℓ
χ̂ℓ,iβkℓ.

For any δ ̸= δ′, the mean value approximation implies Ĝn(δ
′) − Ĝn(δ) = ∇δĜn(δ̃)(δ

′ − δ),

where δ̃ is an intermediate value between δ, δ′ and the gradient ∇δĜn(δ) is

2

n

∑
i
q̄i(δ)[ηi(θ), Ĥi, γ∇θηi(θ)].

Let ∥.∥ denote the Euclidean norm. By the Cauchy-Schwarz inequality,

|∇δĜn(δ̃)(δ
′ − δ)| ≤

∥∥∥∇δĜn(δ̃)
∥∥∥× ∥δ′ − δ∥ ,

where
∥∥∥∇δĜn(δ̃)

∥∥∥ is Op(1) under T3. Then by Lemma 2.9 in Newey and McFadden (1994),

sup
δ∈D

|Ĝn(δ)−G0(δ)|
p→ 0.

In addition, G0 is continuous in δ over D under T3. Under the condition in T2, δ0 is a unique

maximizer of G0(.) over D. By Theorem 2.1 in Newey and McFadden (1994), δ̂n
p−→ δ0. □

B. An Example of Random Network

This section presents an example of networks with undirected links (i.e., gij = gji for any

i, j ∈ N) that satisfy the conditions in Assumption 5 (existence of limits as n → ∞) and

Assumption 6 (asymptotic uncorrelation as n→ ∞).

As in Section 2, let N denote the set of individuals and let n ≡ #N ∈ N++ ≡

{1, 2, 3, ..,∞}. Each individual is characterized by a binary characteristic xi ∈ X ≡ {1, 2}.

(Generalization to the case #X ≥ 3 is straightforward.) Individual characteristics xi, i =

1, ..., n are independently drawn from a fixed multinomial distribution with p(k) ≡ Pr{xi = k}

with k = 1, 2. Let n(k) ≡ #{i ∈ N : xi = k} for k = 1, 2. By an application of the Weak

Law of Large Numbers, n(k) → ∞ and n(k)/n → p(k) ∈ (0, 1) as n → ∞ for k = 1, 2. As

in the text, let En(.) denote the expectation under Fn, or the distribution of (τi)i∈Nn in the
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data-generating process (DGP) indexed by network size n, and let Pn denote the proba-

bility measure in the DGP. Consider a random Poisson network that satisfies the following

conditions on link formation.

(R1). For each n and k, ℓ = 1, 2, Pn{gij = 1|xi = k, xj = l} = q(kℓ),n, where q(kℓ),nn(ℓ) →

ρ(kℓ) <∞ as n→ ∞.

(R2). For each n, the distribution of links conditional on individual characteristics is∏
j>i

En(gij|xi, xj)g̃ij [1− En(gij|xi, xj)]1−g̃ij ,

where g̃ij denotes realized values of gij.

Under R2, the links are independent once conditional on the characteristics of individuals.

Recall from Section 2 that an individual i’s neighborhood profile is summarized by a vector

of integers ni ≡ (ni,1, ni,2) with ni,1 + ni,2 = #Ni, where ni,k ≡ #{j : gij = 1, xj = k} and

Ni ≡ {j ∈ N : gij = 1}. Let mi ≡ (mi1,mi2) ≡ (min{ni,1, n̄1},min{ni,2, n̄2}). That is, for

any fixed n, the k-th component in mi ∈ N2
+ follows a binomial distribution censored at an

exogenously fixed maximum number of type-k friends possible, denoted by n̄k for k = 1, 2.

By construction M ≡ {0, 1, ..., n̄1} × {0, 1, ..., n̄2} is finite and invariant as n→ ∞. For any

n and any m̄ ≡ (m̄1, m̄2) ∈M ,

En [1{xi = k,mi = m̄}] = p(k)Pn{mi1 = m̄1,mi2 = m̄2|xi = k}

= p(k)Pn{mi1 = m̄1|xi = k}Pn{mi2 = m̄2|xi = k}, (21)

where the second equality follows from Condition R2. By definition, for any m̄k < n̄k,

Pn{mik = m̄k|xi = k} = Pn{nik = m̄k|xi = k}

=

(
n(k) − 1

m̄k

)[
q(kk),n

]m̄k
[
1− q(kk),n

]n(k)−m̄k−1
.

Under Condition R1, the Poisson Limit Theorem applies and the expression on the right-

hand side converges to [
ρ(kk)

]m̄k exp{−ρ(kk)}/(m̄k!),

which is the probability mass function (p.m.f.) of a random variable distributed as Poisson

with mean ρ(kk). Furthermore,

Pn{mik = n̄k|xi = k} = Pn{nik ≥ n̄k|xi = k}.
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Under Condition R1, q(kℓ),n = O(n−1). This implies nq2(kℓ),n → 0. Thus by the Le Cam’s

Theorem in Le Cam (1960) and an application of triangular inequality,∣∣∣Pn{nik ≥ n̄k|xi = k} −
∑∞

m̄k=n̄k

[
ρ(kk)

]m̄k exp{−ρ(kk)}/(m̄k!)
∣∣∣ → 0

as n→ ∞. That is, as the network size increases to infinity, Pn{nik ≥ n̄k|xi = k} converges to

the survival function (evaluated at n̄k) of a Poisson variable with mean ρ(kk). By a symmetric

argument, we can show similar results with l ̸= k: Pn{mil = m̄ℓ|xi = k} converges to a

Poisson p.m.f. with mean ρ(kℓ) for m̄ℓ < n̄ℓ; and converges to the survival function at n̄ℓ of a

Poisson variable with mean ρ(kℓ) for m̄ℓ = n̄ℓ. (To show this, replace n(k) − 1, q(kk),n, ρ(kk) in

the argument above with n(ℓ), q(kℓ),n, ρ(kℓ) respectively, and apply the Le Cam’s Theorem.)

Thus the right-hand side of (21), and consequently En [1{xi = k,mi = m̄}], converges to

some non-zero limits p∗(x,m) for all m̄ ∈M and k = 1, 2.

Consider an uncensored vectors m̃. Then

En(1{mj = m̃}|xj = 2, xi = 1,mi = m̄, gij = 1)

=

(
n(1) − 1

m̃1 − 1

)[
q(21),n

]m̃1−1 [
1− q(21),n

]n(1)−m̃1

(
n(2) − 1

m̃2

)[
q(22),n

]m̃2
[
1− q(22),n

]n(2)−m̃2−1

→ ρm̃1−1
(21)

exp{−ρ(21)}
(m̃1 − 1)!

ρm̃2

(22)

exp{−ρ(22)}
m̃2!

,

where the second equality follows from conditional independence in link formation under

Condition R2, and the convergence is due to Poisson approximation of a binomial distribu-

tion. Similar derivation for the other case with m̃ = (n̄1, n̄2) implies similar results, only with

probability mass functions replaced by survival functions in the limit. Thus q∗(m′|x′, x,m)

exists for all x, x′ ∈ X and m,m′ ∈M . Note that in this example, q∗(.|x′, x,m) depends on

x′, x but not m, which is consistent with the rank condition for identification presented in

Section 3.2.

We now show that asymptotic uncorrelation conditions in Assumption 6 hold in this

model. Let ξn ≡ (n(1), n(2)), where n(k) ≡ #{i ∈ N : xi = k}. For a given sample size n and

a pair of fixed values (x,m), the law of total covariance implies:

Cn(ιi(x,m), ιj(x,m)) = En [Cn(ιi(x,m), ιj(x,m)|Xi, Xj, ξn)] + Cn(µi,n, µj,n), (22)

where µi,n ≡ En[ιi(x,m)|Xi, Xj, ξn] and likewise for µj,n.
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First, note that for k, ℓ ∈ {1, 2} and m̄, m̃ ∈M , and conditional on ξn (which we suppress

in notation for now),

Pn{mi = m̄,mj = m̃|xi = k, xj = l}

= Pn{mi = m̄,mj = m̃|xi = k, xj = l, gij = 1}q(kℓ),n

+ Pn{mi = m̄,mj = m̃|xi = k, xj = l, gij = 0}(1− q(kℓ),n).

Because q(kℓ),n → 0 as n→ ∞, the difference between the right-hand above and the sequence

Pn{mi = m̄,mj = m̃|xi = k, xj = l, gij = 0} diminishes to zero as n → ∞. For example, for

k ̸= l and any uncensored values of m̄, m̃ in M ,

Pn{mi = m̄,mj = m̃|xi = k, xj = l, gij = 0}

=

(
n(k) − 1

m̄k

)[
q(kk),n

]m̄k
[
1− q(kk),n

]n(k)−m̄k−1
(
n(ℓ) − 1

m̄ℓ

)[
q(kℓ),n

]m̄ℓ
[
1− q(kℓ),n

]n(ℓ)−m̄ℓ−1

(
n(k) − 1

m̃k

)[
q(lk),n

]m̃k
[
1− q(lk),n

]n(k)−m̃k−1
(
n(ℓ) − 1

m̃ℓ

)[
q(ℓℓ),n

]m̃ℓ
[
1− q(ℓℓ),n

]n(ℓ)−m̃ℓ−1
.

Again, by an application of the Poisson approximation of a Binomial distribution and the

Le Cam’s Theorem, we have:

Pn{mi = m̄,mj = m̃|xi = k, xj = l, gij = 0} − Pn{mi = m̄|xi = k}Pn{mj = m̃|xj = l} → 0

as n → ∞ for all m̄, m̃ ∈ M . This implies the first term on the right-hand side of (22)

converges to zero as the network size increases.

Next, note the second term on the right-hand side of (22) is:

Cn(µi,n, µj,n) = En (µi,n, µj,n)− En(µi,n)En(µj,n). (23)

In what follows, we sometimes suppress the dependence of ιi, ιj on the fixed values (x,m) to

simplify notation when there is no ambiguity. By the law of iterated expectation,

En (µi,n, µj,n) =
∑

xi

∑
xj
Pr{(Xi, Xj) = (xi, xj)}En [µi,n, µj,n| (Xi, Xj) = (xi, xj)]

= Pr{(Xi, Xj) = (x, x)}En [µi,n, µj,n| (Xi, Xj) = (x, x)] , (24)

where the last equality holds because En [µi,nµj,n| (Xi, Xj) = (xi, xj)] = 0 if either xi ̸= x or

xj ̸= x.13 Furthermore, independent dyadic link formation in (R2) implies:

µi,n(x,m) =
∑

d∈{0,1}
En[ιi(x,m)|Xi, Xj, ξn, gij = d]Pn(gij = d|Xi, Xj).

13Recall µi,n, µj,n are conditional expectations of two indicator functions evaluated at fixed values (x,m),

which we suppress in notation.
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A similar decomposition holds for µj,n, with ιi replaced by ιj above.

Without loss of generality, consider the case with x = 1. Under (R1) and (R2),

En[ιi(1,m)|(Xi, Xj) = (1, 1), ξn = (n(1), n(2)), gij = 0]

= En
[
1{Mi = (m1,m2)}|(Xi, Xj) = (1, 1), ξn = (n(1), n(2)), gij = 0

]
=

(
n(1) − 2

m1

)[
q(11),n

]m1
[
1− q(11),n

]n(1)−m1−2
(
n(2)

m2

)[
q(12),n

]m2
[
1− q(12),n

]n(2)−m2 ,(25)

which, as n(1), n(2) → ∞, converges to:

ρm1

(11)

exp{−ρ(11)}
(m1)!

ρm2

(12)

exp{−ρ(12)}
(m2)!

≡ δ1,

according to the Le Cam Theorem.

By a similar argument, En
[
1{Mi = (m1,m2)}|(Xi, Xj) = (1, 1), ξn = (n(1), n(2)), gij = 1

]
converges to another finite constant similar to δ1 as n(1), n(2) → ∞, only with m1 replaced by

m1 − 1. Because the link formation rates q(kl),n → 0 for all k, l ∈ {1, 2}, we know µi,n(1,m)

converges to δ1 at (Xi, Xj) = (1, 1) as the network grows. By the same argument, µj,n(1,m)

converges to the same constant δ1 at (Xi, Xj) = (1, 1) as the network grows.

With Xi i.i.d. across i and Pr{Xi = k} = p(k) for k = 1, 2 fixed at all sample sizes, we

have µi,n(1,m)
p,→ δ1 and µj,n(1,m)

p→ δ1 for (Xi, Xj) = (1, 1) as the network grows n→ ∞.

(See a formal proof of the claim below.) An analogous argument shows µi,n(2,m)
p→ δ2 and

µj,n(2,m)
p→ δ2 for (Xi, Xj) = (2, 2) as n → ∞, where δ2 is similar to δ1, only with ρ(1k)

replaced by ρ(2k). It then follows from (24) that, for any (x,m),

En[µi,n(x,m)µj,n(x,m)] →
[
p(x)

]2
(δx)

2 as n→ ∞. (26)

Next, we show convergence of En(µi,n) and En(µj,n). By the law of iterated expectation,

En [µi,n(x,m)] =
∑

(xi,xj)
Pr{(Xi, Xj) = (xi, xj)}En [µi,n(x,m)| (Xi, Xj) = (xi, xj)]

= Pr{Xi = x}

∑
xj

Pr{Xj = xj}En [µi,n(x,m)| (Xi, Xj) = (x, xj)]

 .(27)

W.L.O.G., consider the case with (x,m) = (1,m). We already showed µi,n(1,m)
p→ δ1 for
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(Xi, Xj) = (1, 1) as n→ ∞, so it remains to consider the case with (Xi, Xj) = (1, 2). Note:

En[ιi(1,m)|(Xi, Xj) = (1, 2), ξn = (n(1), n(2)), gij = 0]

= En
[
1{Mi = (m1,m2)}|(Xi, Xj) = (1, 2), ξn = (n(1), n(2)), gij = 0

]
=

(
n(1) − 1

m1

)
qm1

(11),n

[
1− q(11),n

]n(1)−m1−1
(
n(2) − 1

m2

)
qm2

(12),n

[
1− q(12),n

]n(2)−m2−1
,

which converges to the same constant δ1 as in the case of (Xi, Xj) = (1, 1) in (25). (This

is because the growing sequence n(1), n(2) has no role in the limit, as long as n(k) × q(kl),n

converges to ρ(kl) as the network grows.) With diminishing dyadic link formation rates,

Pn{gij = 0|Xi, Xj} converges to one as the network grows. As before, by the law of iterated

expectation, we have µi,n(1,m)
p→ δ1 for (Xi, Xj) = (1, 2). Most importantly, this probability

limit is the same as for (Xi, Xj) = (1, 1). This implies En [µi,n(x,m)|(Xi, Xj) = (x, xj)]

converges to the same constant δx, regardless of the value of xj.

It follows from (27) that En [µi,n(x,m)] → p(x)δx for any fixed value of x as n → ∞. By

a symmetric argument, En [µj,n(x,m)] → p(x)δx. Consequently,

En [µi,n(x,m)]En [µj,n(x,m)] →
[
p(x)

]2
(δx)

2 as n→ ∞. (28)

Together, (23), (26) and (28) imply the second term on the right-hand side of (22) diminishes:

Cn(µi,n, µj,n) → 0 as n→ ∞.

Finally, the condition that

Cn(ιj(x
′,m′)ιi(x,m)gij, ιℓ(x

′,m′)ιt(x,m)glt) → 0 ∀x, x′ ∈ X,m,m′ ∈M

as n → ∞ for {i, j} ∩ {t, l} = ∅ in this context follows from similar derivation, which we

omit in the text for brevity.

Some intermediate results above make use of the following claim, which we now state

and prove formally. Recall that n ≡ #N denotes the network (sample) size, and {Xi}i≤n
are i.i.d. with Pr{Xi = k} = p(k) for k = 1, 2, where p(k) are fixed constants invariant to the

sample size. Also recall that ξn ≡ (ξn,1, ξn,2), where ξn,k ≡ #{i ∈ N : Xi = k} for k = 1, 2.

Let Nn = {(n1, n2) ∈ N2
+ : n1 + n2 = n} denote the support of ξn.

Claim. Let fn : Nn → R be a sequence of real-valued functions with domain Nn. If

fn(n1, n2) converges to some constant c <∞ as n1, n2 → ∞, then fn(ξn)
p−→ c as n→ ∞.
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Proof. By assumption, for any ε > 0, there exist integers n̄1, n̄2 < ∞ so that |fn(n1, n2)−

c| ≤ ε for all n1 > n̄1 and n2 > n̄2. Hence

Pr{ξn,1 > n̄1 and ξn,2 > n̄2} ≤ Pr{|fn(ξn)− c| ≤ ε},

or, equivalently,

Pr{|fn(ξn)− c| > ε} ≤ Pr{ξn,1 ≤ n̄1 or ξn,2 ≤ n̄2}

≤ Pr{ξn,1 ≤ n̄1}+ Pr{ξn,2 ≤ n̄2},

where Pr{ξn,1 ≤ n̄1} =
∑n̄1

s=0 ϕs,n with ϕs,n ≡
(
n
s

)
ps(1)[1 − p(1)]

n−s and likewise for Pr{ξn,2 ≤

n̄2}. For s = 0, ϕs,n = [1− p(1)]
n → 0 as n→ ∞. For any 1 ≤ s ≤ n̄1,

(
n
s

)
is bounded above

by ns/ (s!). Hence ϕs,n ≤ Cns[1− p(1)]
n, with C ≡

ps
(1)

(s!)[1−p(1)]s
being a finite constant, and

log ϕs,n ≤ logC + s log(n) + n log
[
1− p(1)

]
.

For any finite s, the right-hand side diverges to −∞ as n → ∞ (because n−1 log n → 0

as n → ∞). Therefore, for each 0 ≤ s ≤ n̄1, we have ϕs,n → 0 as n → ∞. This implies

Pr{ξn,1 ≤ n̄1} → 0 as n→ ∞. By the same argument, Pr{ξn,2 ≤ n̄2} → 0 as n→ ∞. Hence

for any ε > 0,

Pr{|fn(ξn)− c| > ε} → 0 as n→ ∞.

That is, fn(ξn)
p−→ c as n→ ∞. □

C. Asymptotic Distribution of the Two-Step Estimator

In this part of the appendix, we sketch a heuristic discussion about the asymptotic distribu-

tion of our two-step m-estimator. As noted in the text, our goal here is not to show how to

conduct formal inference. Instead, we intend to provide a framework for understanding and

deriving the estimator’s asymptotic properties. Full characterization of its limiting variance

under primitive conditions, as well as the construction of standard errors, would require more

elaborate conditions that restrict the form and magnitude of dependence between individual-

specific variables (i.e., actions and characteristics) over the network. We leave these tasks

for future research.
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Let ρ̂ denote the vector of all first-stage estimates in λ̂i and χ̂ℓ,i. That is,

ρ̂ =



n−1
∑

i ιi(x,m)

n−1
∑

i aiιi(x,m)(
1

n(n−1)

∑
j ̸=i ιj(x

′,m′)ιi(x,m)gij

)
x′,m′(

1
n(n−1)

∑
j ̸=i 1{xj = x′}ιi(x,m)gij

)
x′


x,m

.

Let ∇δĜn(δ) = n−1
∑

i Γi(δ; ρ̂), with

Γi(δ; ρ̂) = 2q̄i(δ; ρ̂)[ηi(θ), ĉi, γ∇θηi(θ)]

where

q̄i(δ; ρ̂) = λ̂i − γηi(θ)−
∑

k
1k,i

∑
ℓ
χ̂ℓ,iβkℓ

and ĉi is such that 2q̄i(δ; ρ̂)ĉi is the deriative of the objective function with respect to the

vector of coefficients β. By the first-order condition and a mean-value expansition,

√
n∇δĜn(δ) +∇2

δ,δĜn(δ̃)
√
n(δ̂ − δ) = op(1),

where δ̃ is some intermediate value between δ̂ and δ. Assume:

D1. supx∈X,m∈M ∥ρ̂− ρ∥ = op(n
−1/4).

D2. n−1
∑

i∇δΓi(δ; ρ)−Ψn = op(1), where Ψn ≡ En[
1
n

∑
i∇δΓi(δ; ρ)] is full-rank for all n.

D3. ∇2
ρ,ρΓi(δ; ρ) exists and is bounded over an open neighborhood around ρ almost surely

under p∗.

D4. n−1
∑

i∇ρΓi(δ; ρ)− Φn = Op(n
−1/4), where Φn ≡ En[

1
n

∑
i∇ρΓi(δ; ρ)] has full-rank for

each n.

D5. ρ̂−ρ = n−1
∑

i ψn,i+op(n
−1/2) for some ψn,i determined by (δ, ρ) such that En(ψn,i) = 0

for all n.

D6. Λ−1
n

{
1√
n

∑
i [Γi(δ; ρ) + Φn × ψn,i]

}
d→ N(0, I), where I is the identity matrix and Λn a

sequence of positive semi-definite matrices.

The scaling matrix Λn in D6 captures dependence of Γi across individual i over the

network. Characterization of this matrix requires invoking primitive conditions to establish
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a notion of weak dependence between observed individual outcomes over the network. This

would allow us to apply some central limit theorem for weak dependence to the relevant

sample averages as the sample (network) size increases. These entail more elaborate work,

and are suitable for further investigation in another paper.

Lemma C1. Under D1 and D2, ∇2
δ,δĜn(δ̃)−Ψn

p→ 0 whenever δ̃
p→ δ.

Proof of Lemma C1. Let Γi(δ, ρ) be defined in a way that is similar to Γi(δ; ρ̂), only with

the first-stage estimates ρ̂ replaced by the probability limit ρ. That is,

Γi(δ; ρ) = 2
(
λ∗(xi,mi)− γη(xi,mi; θ)−

∑
k
1k,i

∑
ℓ
χ∗
ℓ(xi,mi)βkℓ

)
×[η(xi,mi; θ), ci, γ∇θη(xi,mi; θ)].

By definition,

∇2
δ,δĜn(δ̃)−Ψn = n−1

∑
i

[
∇δΓi(δ̃; ρ̂)−∇δΓi(δ; ρ)

]
︸ ︷︷ ︸

A

+ n−1
∑

i
∇δΓi(δ; ρ)−Ψn︸ ︷︷ ︸

B

.

The absolute value of the first term A on the right-hand side is bounded above by

supx,m |∇δΓ(x,m; δ̃; ρ̂)−∇δΓ(x,m; δ; ρ)|.

Note that the consistency of δ̂ implies δ̃
p→ δ. Hence it is bounded above by a term that is

op(1) because supx∈X,m∈M ∥ρ̂− ρ∥ p→ 0. The second term B is op(1) under condition D2. □

Lemma C2. Under D1, D3, D4 and D5,

√
n∇δĜn(δ) = n−1

∑
i
[Γi(ρ) + Φn × ψn,i] + op(n

−1/2).

Proof of Lemma C2. Let Γi(ρ̂) be shorthand for Γ(xi,mi; δ; ρ̂). By a second-order Taylor

expansion, we can write

∇δĜn(δ) = n−1
∑

i
Γi(ρ̂)

= n−1
∑

i

[
Γi(ρ) +∇ρΓi(ρ)(ρ̂− ρ) + 1

2
(ρ̂− ρ)′∇2

ρ,ρΓi(ρ̃)(ρ̂− ρ)
]

for some ρ̃ between ρ̂ and ρ. Under D3, the absolute value of n−1
∑

i(ρ̂−ρ)′∇2
ρ,ρΓi(ρ̃)(ρ̂−ρ) on

the right-hand side is bounded above by the product of a constant and supx∈X,m∈M ∥ρ̂− ρ∥2,
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where ∥.∥ denotes the sup-norm. Under D1, this upper bound is op(n
−1/2). Under D4,

[n−1
∑

i∇ρΓi(ρ)− Φn]× (ρ̂− ρ) = op(n
−1/2). The claim in the lemma follows from D5. □

It then follows that (Ψ−1
n ΛnΨ

−1
n )

−1/2√
n(δ̂ − δ)

d→ N(0, I) under D1-D5.
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