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after the auction. We find that the contract winners have substantial bargaining
power in post-auction negotiation. On average, the holdup on the buyer is about
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1 Introduction

Government procurement contracts are often subject to negotiation and modification
after their initial assignment through low-price auctions. The initial contract specifi-
cation, or design, might be revised, and an additional transfer be negotiated between
the buyer and the auction winner. Examples include the auctions of procurement con-
tracts by California Department of Transportation (CalTrans) in Bajari, Houghton, and
Tadelis (2014) and Texas Department of Transportation (DOT) in De Silva, Dunne, Kos-
mopoulou, and Lamarche (2015). Awareness of such incompleteness influences how the
sellers (contractors) compete in the auction and interact with the buyer. It also affects the
answer to policy questions such as comparing the buyer surplus under alternative forms
of contracts.

We investigate empirical and theoretical questions related to the strategic incentives
of the buyer and the contractors under incomplete contracts in highway procurement
auctions held by CalTrans. The questions we study are partly motivated by several
stylized facts in the data. First, a non-negligible proportion of the contracts are not revised
after the procurement auctions. Second, among the revised contracts, the negotiated
transfers vary significantly even conditional on the size of revision. Third, while the
characteristics of the contracts (e.g., the job type and the capacity of contractors involved)
have no obvious effect on the size of revision, they do have a significant impact on the
negotiated transfers.

These patterns naturally lead to the following questions. What factors determine the
revision of a contract and the transfer to the contractor in the subsequent negotiation?
How do those factors depend on the bargaining power of the buyer and the features of the
contract? Is it possible to use data on the bids and the negotiated transfers to infer the
social surplus generated by the contract and the costs for contractors? How to quantify
the holdup on the buyer due to uncertainty about the new design? How would a buyer’s
surplus change under an alternative (counterfactual) form of cost-plus contracts?

We use a new structural model to answer these questions. In our model, a buyer
announces an initial contract specification based on a private signal that is correlated
with a new feasible design to be drawn later. The contractors are notified of the initial
specification, and then bid competitively in a low-price auction. Both the buyer and the
contractors are aware that the new design will supplant the initial specification if it leads
to an increase in net social surplus. If a contract is revised, the buyer then makes a
transfer to the auction winner in addition to the initial auction payment. The size of
this transfer is negotiated via Nash Bargaining. The auction price affects the bargaining
outcome through disagreement values. The buyer and contractors take this into account
in strategic decisions before and during the auction. The holdup on the buyer is defined
as the negotiated share of net incremental surplus paid to the auction winner.

We recover structural elements of the model through sequential steps, using multiple
sources of variation in the data. First, we exploit the consistency of equilibrium beliefs
to identify the buyer’s belief about the new design, using the joint distribution of initial
and revised contract specification. Next, we apply an argument in Guerre, Perrigne,
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and Vuong (2000) to recover the contractors’ adjusted costs, using the bid distribution
under the initial specification. These costs include a downward adjustment made by the
contractors after accounting for their holdup on the buyer. We then use the observed
relation between the initial contract specifications, the auction prices and the negotiated
transfers to recover the marginal effect of contract design on social surplus by utilizing
the buyer’s first-order condition in equilibrium. This allows us to back out the costs
for revising contracts and the buyer’s bargaining power under flexible shape restrictions
on the revision costs. With these model elements recovered, the contractor’s holdup on
the buyer is identified. It then follows that the bidding strategy of contractors and the
distribution of their costs are also identified. Using these model primitives, we compare
the buyer surplus in the data with that under counterfactual cost-plus contracts.

Applying this model to CalTrans highway procurement auctions, we find that the
auction winners have significant bargaining power against the buyers, which depends on
the intensity of competition as well as contractor characteristics such as the utilization
rate (i.e., the ratio between a contractor’s backlog and its capacity). Our estimates also
indicate that there is an increasing return in the social surplus from highway construction,
and that the net surplus from the contract revision is nonlinear in the size of revision.
These results are consistent with the reduced-form patterns in the data which motivate
our structural approach.

The average markup in a contractor’s bid is around 11%. Markups vary with contract
characteristics such as the job type and the utilization rate of competitors, and decrease
sharply with the intensity of competition in auctions. Besides, our estimates suggest that
auction winners have high markups, possibly due to their cost advantage over competitors.
In addition, we find that markups are over-estimated by about 26% on average if the
impact of uncertainty in contract revision on contractors’ bids is not accounted for.

Our estimates suggest that incomplete contracts lead to sizable holdup on the buyer
(on average 20% of CalTrans’ engineering estimate for project costs). The holdup as a
percentage of the engineering estimate is higher for contracts involving major jobs or more
bidders. We show that counterfactual cost-plus contracts would lower buyer surplus for
72% of the projects in the data, with an average reduction of $382, 074. This indicates
that the buyer’s gains in ex ante surplus under fixed-price contracts mostly outweigh the
cost of holdup due to incomplete contracts.

Models of incomplete contracts have been used to study employment relation (Simon
(1951), Klein, Crawford, and Alchian (1978)), ownership and the property rights of firms
(Williamson (1985), Grossman and Hart (1986), Hart and Moore (1990)), and interna-
tional trade (Spencer (2005)). Our work in this paper is related to Tirole (2009), which
models contractual incompleteness as a consequence of the buyer’s optimal choice of cog-
nitive effort. We extend Tirole (2009) to an environment where the initial contract price
is determined via competitive bidding.

We contribute to a growing empirical literature on bargaining in various contexts.
This includes the bilateral negotiation between hospitals and managed-care organizations
in Gowrisankaran, Nevo, and Town (2014), the employer-insurer and hospital-insurer
negotiation over premiums and reimbursements in Ho and Lee (2017), and the price
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negotiation between suppliers and buyers in the health industry in Grennan (2013).
Our work is closely related to the literature on post-auction bargaining (e.g., Elyakime,

Laffont, Loisel, and Vuong (1997) and Larsen (2014)) and on incomplete contracts (e.g.,
Crocker and Reynolds (1993), Bajari, McMillan, and Tadelis (2009), Bajari, Houghton,
and Tadelis (2014), Lewis and Bajari (2014) and De Silva, Dunne, Kosmopoulou, and
Lamarche (2016)). Compared with these other papers, our structural model has distinc-
tive new features about the rationale and the information structure of the incomplete
contracts. (See Section 2.3 for details.) In addition, we address new empirical questions
such as measuring the holdup on the buyer and quantifying the difference in buyer sur-
plus under various contract formats. The identification of our model requires an original
method that has not been used in other contexts.

Our paper also contributes to a broader literature on the identification of structural
models of auctions and contracts (e.g., D’Haultfoeuille and Février (2007), Aryal, Per-
rigne, and Quang (2012), Perrigne and Vuong (2011) and Perrigne and Vuong (2012)).
These papers establish mappings between the unobserved agent types and the observed
contract features. In comparison, we consider a model where the classical arguments
based on the contractor incentives alone are insufficient for identifying the full model.
Hence we construct a new argument that capitalizes on the buyer’s rationality and the
Nash Bargaining interpretation of the negotiated transfers to identify the model elements.

While we use the same source of data as Bajari, Houghton, and Tadelis (2014), our
model differs qualitative from the latter. Bajari, Houghton, and Tadelis (2014) maintained
that the buyer’s choice of the initial contract specification is exogenous and that the
contractors have perfect foresight about the negotiated transfers as well as the new feasible
design, both of which are assumed exogenous.1 Their model does not rationalize why the
buyer and contractors would include an incompleteness pact that allows them to adopt
a new design after the auction. Nor does it link the holdup on the buyer to ex ante
uncertainty about the new design. In comparison, we relax these assumptions and model a
game of sequential moves with private information that rationalizes incomplete contracts.
We also answer new empirical and policy questions mentioned above.

In Section 2 we describe our model and define its equilibrium. In Section 3 we dis-
cuss the identification of model elements. Section 4 describes the data and institutional
background of CalTrans highway procurement auctions, and summarizes stylized facts
that motivate our structural model. Section 5 defines our estimation method. Section 6
reports estimates for structural parameters as well as contractor markups and holdup on
the buyer. In Section 7 we compare the buyer surplus under counterfactual cost-plus con-
tracts with that in the data. Section 8 concludes. Proofs, figures and tables are collected
in the appendix.

1See the second paragraph in Section II.A and equation (1) in Section II.B in Bajari, Houghton, and
Tadelis (2014).
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2 The Model

Our model of procurement auctions with incomplete contracts accommodates het-
erogeneity on the contract level, which we suppress in the notation in order to simplify
exposition. In what follows we denote random variables by upper-case letters and their
realized values by lower-case letters.

2.1 Strategic decisions and contract incompletness

A buyer announces an initial specification (design) X ∈ X for a procurement contract,
where the support X is convex and compact in the real line R. There are N sellers
(contractors) competing for the contract. Once informed of X, each contractor i draws a
private cost Ci for completing the contract with the design X, and quotes a price Pi ∈ R+.
The distribution of Ci conditional on the initial design is stochastically increasing in X.
The buyer awards the contract to the seller who quotes the lowest price. For any initial
design X, the costs of contractors are drawn independently from a continuous distribution
FC|X with support C ⊂ R+ which may also depend on X.

The contract is incomplete in that the buyer and the auction winner agree that the
initial design may be replaced by a new design X∗ ∈ X following the auction. The
modification takes place after a winner is chosen to execute the contract with the initial
design. The new design X∗ is unknown ex ante to the buyer and all contractors. Thus it
is considered stochastic when the buyer announces the initial design and the contractors
quote their prices. The private cost Ci for implementing the contract conditional on the
initial design X is independent from X∗.

The buyer and the auction winner observe the realization of X∗ after the auctions, and
make a joint decision on whether to adopt the new design or not based on the following
rule. Let π : X → R be the social surplus collected by the buyer. (For example, suppose
the procurement contract is about constructing a tollway. Then π(X) is the present value
of the stream of revenues to be collected by the buyer from that tollway.) The incremental
surplus under the new design is φ(X,X∗) ≡ π(X∗) − π(X). Let a : X × X → R be the
incremental cost for changing the design from X to X∗. These include costs for additional
construction or logistic tasks. We maintain that such incremental costs are non-separable
in X and X∗ so that the marginal costs in general depend on (X,X∗). Assume both π
and a are bounded and continuously differentiable over their domains. Upon seeing the
new design X∗ after the auction, the buyer and the auction winner agree to adopt it if and
only if it yields a positive net incremental surplus relative to the initial design X. That
is, s(X,X∗) ≡ φ(X,X∗)−a(X,X∗) > 0 . Otherwise, the initial design X is implemented.

2.2 Post-auction negotiation

If X∗ is adopted, the buyer and the winner negotiate transfers in addition to the
payment determined in the auction. The contractor covers the incremental costs upfront
as they arise in construction. The incremental surplus is collected by the buyer. Both
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parties take these into account as they negotiate the transfers. We maintain that the
post-auction transfer is determined via Nash Bargaining as follows. Let y(X,X∗) ∈ R
denote the negotiated transfer from the buyer to the auction winner; and let γ ∈ (0, 1)
be a constant parameter reflecting the bargaining power of the winner.2 To simplify
notation we suppress the argument (X,X∗) in the functions y, φ, a, s. The contract price
from the auction enters disagreement values in Nash Bargaining. After the negotiated
transfers are made, the auction winner obtains a share of the net incremental surplus that
is proportional to its bargaining power. That is,

y − a = γs⇔ y = γφ+ (1− γ)a (1)

if a new design is adopted (See Appendix A for details in deriving the Nash Bargaining
solution). On the other hand, there is no negotiated transfer, or y = 0, if no new design
is adopted.

2.3 The information structure

The information structure of the model is as follows. Prior to announcing the initial
design, the buyer observes a signal X̃ ∈ X̃ , where the support X̃ is a compact interval in
R, and in general is not the same as X . The private signal X̃ is correlated with X∗. In
what follows, we let FR′|R and fR′|R denote the conditional distribution and the conditional
density of R′ given R respectively, and write FR′|R=r and fR′|R=r if there is need to be
specific with the value conditioned on. The model elements γ, π, a, FC|X and FX∗|X̃ are
common knowledge among the buyer and contractors. Assume FX∗|X̃=x̃ is absolutely

continuous and increasing over X̃ for all x̃.
To reiterate, X̃ and Ci are private information for the buyer and the contractor i

respectively. At the beginning of the auction, the buyer announces X to maximize its
ex ante payoff, based on its signal X̃ and taking into account the strategic incentives of
contractors under incomplete contracts. A contractor is informed of X, draws its private
cost Ci from FC|X and quotes a price to maximize its ex ante profit, which also takes
into account the negotiated transfer ex ante. We maintain that the number of contractors
in an auction N is common knowledge among the buyer and contractors in the bidding
stage.

Compared with the existing literature, our model has several distinctive features mo-
tivated by the empirical questions we investigate. First, it endogenizes the buyer’s choice
of the initial contract specification. Accounting for strategic incentives in the choice of
initial design as well as the bids is important for measuring the contractors’ markup in
the bids and the holdup on the buyer. Second, we rationalize contract revision by a new
design which increases the net surplus, and model negotiated transfers as Nash Bargaining
solutions. Contract characteristics affect the negotiated transfers through their impact on

2The bargaining power depends on project and contractor characteristics in general. We focus on
homogeneous auctions to simplify the exposition in the model and identification sections. Our results
are generalizable conditional on observed auction and contractor heterogeneity. In the application, we
estimate a model with heterogeneous auctions.
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bargaining power. Third, we maintain a flexible information structure whereby neither
the buyer nor the contractors have perfect foresight or rational expectation of the revised
contract or transfers. In comparison, Bajari, Houghton, and Tadelis (2014) and De Silva,
Dunne, Kosmopoulou, and Lamarche (2016) assumed that the contractors have rational
expectation about the actual quantities to be used in the new design conditional on the
contract being revised. Jung, Kosmopoulou, Lamarche, and Sicotte (2014) assumed that
contractors form expectations about the future adjustments on each item based on the
historical probability of revision and negotiation.

2.4 The equilibrium concept

A contractor i’s pure strategy is a mapping from his information (Ci, X) to the price

he quotes; a buyer’s pure strategy is a mapping from a signal X̃ to an initial design X.
Let s+ ≡ max{s, 0} denote the realized net incremental surplus. In a symmetric pure-
strategy Perfect Bayesian Equilibrium (psPBE ), the buyer follows a pure strategy α∗,
and each contractor follows a pure strategy β∗ and holds a belief about the new design
λ∗(X∗|X) : X × X −→ [0, 1] such that: (a) for all (x, ci),

β∗(ci, x) = arg max
b∈R+

Pr

(
min
j 6=i

β∗(Cj, X) ≥ b

∣∣∣∣X = x

)
[b− ci + δ(x;λ∗)] (2)

where δ(x;λ∗) ≡ Eλ∗ [γs+(x,X∗)|X = x] is a contractor’s expected share of the net
incremental surplus according to his belief λ∗(·|x); (b) λ∗ is consistent with FX∗|X̃ and

α∗ for all x on the support of α∗(X̃); and (c) α∗ is the buyer’s best response when all
contractors follow β∗:

α∗(x̃) = arg max
x∈X
{π(x)− ϕ(x; β∗) + µ(x, x̃)} , (3)

where µ(x, x̃) ≡ E[(1− γ)s+(x,X∗)|X̃ = x̃] and ϕ(x; β∗) is the buyer’s expected payment
in the auction with design x when all contractors follow the strategy β∗. (We provide the
closed form for ϕ in Appendix B.) In addition, the contractor’s belief off the equilibrium
support of α∗(X̃) is such that any deviation from the equilibrium path is not payoff-
improving for the buyer.

As (3) shows, the buyer’s choice of the initial design X involves a tradeoff. First, the
initial design affects the expected payment in the auction, with a marginal effect deter-
mined by the dependence between the design X and the contractor’s cost. Furthermore,
the initial design affects the buyer’s expected share of the net incremental surplus due
to contract revision. However, the sign of this marginal effect is ambiguous because it
depends on the form of the incremental surplus function and the joint distribution of the
initial and the new design.

The term µ(x, x̃) in (3) is the buyer’s ex ante share of the net incremental surplus
due to contract revision, and is assumed continuous in the buyer’s private signal. The
expectation in µ(x, x̃) integrates out X∗ with respect to its distribution conditional on

X̃ = x̃, and does not depend on the contractor belief λ∗. We refer to δ(x;λ∗) as a
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contractor’s holdup on the buyer under the initial design in equilibrium. In symmetric
monotone psPBE, α∗ is increasing over X̃ , and β

∗
is increasing over C for any x ∈ X .

The consistency of contractor beliefs in (b) means FX∗|X=x = FX∗|X̃=α∗−1(x) for all x on

the equilibrium support of α∗(X̃).
We provide a heuristic overview of our argument for the existence of symmetric mono-

tone psPBE, which takes several steps and is presented formally in Appendix B. First,
for any given initial design X and belief λ, a contractor’s optimization problem is similar
to that in a standard lowest-price procurement auction, except that its private cost is
adjusted downward into Ci − δ(x;λ) because of its holdup on the buyer. Using auction
theory, we characterize the bidder strategy and the expected auction price in a bidding
equilibrium as functions of X and λ. Next, note the first-order condition that character-
izes the buyer’s rationality takes the form of an ordinary differential equation (ODE). We
argue that there exists a strictly monotone solution to this ODE under appropriate con-
ditions based on the Picard’s Existence Theorem. These conditions include the Lipschitz
continuity of the functional form of ODE in the initial design, and the stochastic increas-
ingness of FC|X in the initial design. Finally we characterize contractor beliefs outside
the equilibrium support of the initial contract design. Such beliefs are ultra-pessimistic in
that they assign no probability mass to new designs with positive net surplus. We show
that such beliefs rationalize the buyer’s choice of initial designs on the equilibrium path.

2.5 Further remarks

In this model, the buyer has a noisy signal X̃ about the new design X∗ before the
auction, whereas the contractors have no private signals and update their beliefs about
the new design given the buyer’s choice of the initial design X. Such a specification of
information structure is largely motivated by practical considerations. In most cases,
the social surplus from public projects accrues directly to the buyer, who may well have
some idea about which contract designs result in higher social surplus. This is in part
reflected in the buyer’s private signal about X∗. It is also worth noting that there is no
explicit information asymmetry between the buyer and the contractors in equilibrium.
This is because in a psPBE the contractor’s belief about X∗ is consistent via Bayesian
updating conditional on any X on the equilibrium support of the initial design. Thus in
equilibrium the contractors could correctly recover the buyer’s signal X̃ by inverting α∗

on the equilibrium support of X. With FX∗|X̃ assumed common knowledge for the buyer
and the contractors, this means a contractor is no less informed about the feasible new
design X∗ relative to the buyer on the equilibrium path.

Our model simplifies several aspects in the negotiation that follows the procurement
auction. First, the Nash Bargaining solution used in the negotiation posits the net in-
cremental surplus is known to both the buyer and the auction winner. Hence our model
consists of an incomplete information aspect (during the initial low-price procurement
auction) and a complete information aspect (in the negotiation after the auction). This
is a limitation in our approach of modeling, and it leads to a loss of generality in the
information structure. An alternative setup of bargaining with incomplete information
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would be more robust. Nevertheless, as Myerson (1984) noted, the generalization of the
Nash Bargaining solution with private information is complicated. The identification of
the model elements in that case remains an open question.3

We introduce this working assumption above as a first-order approximation of the ac-
tual information structure, in order to keep the identification and estimation of the model
tractable. We believe that the complete-information Nash Bargaining solution provides
a reasonable approximation of the buyer-seller negotiation in our specific application, be-
cause the new design X∗ and the negotiation take place after the auction. At that point,
both the auction winner and the buyer may well be informed about the actual costs of
contract revision through implementation and monitoring. In contrast, a contractor’s
initial cost Ci is drawn before the auction and hence remains the contractor’s private
information in the bidding stage.

Another working assumption in our model is that the incremental costs for revising
contracts depend on the features of the project (such as the job type) but not on the
identity of the auction winner. Without this simplification, there would be an additional
source of ex ante uncertainty regarding contractor costs, thus making the equilibrium
characterization and the identification of model elements intractable. We believe this
simplifying assumption is a reasonable first-order approximation of the relation between
the contract features and the negotiated outcome in the data. Descriptive analyses of our
data suggest that the variation in the negotiated transfers in the data are mostly explained
by the observed heterogeneity on the contract level, rather than individual characteristics
of the auction winner. Furthermore, despite the simplification, the negotiated transfer
depends on contract heterogeneity through the net surplus due to contract revision and
through the contractor’s bargaining power in negotiation.

In our model, the specification of a contract is summarized by a scalar variable that
could be interpreted as the buyer’s engineer estimates for the total cost. This simplifies
the practice of specifying contracts in terms of itemized quantities. Such a simplification
allows us to construct a structural model with two desirable features. On the one hand,
the dimension of unknown parameters is low enough to warrant the robust identification
of model elements; on the other hand the model is rich enough to capture the strategic
interaction between the buyer and contractors given the uncertainty about the new design
and given the order of sequential actions. An alternative model with multi-dimensional
contracts would be more general and closer to the actual practice, but would increase the
dimension of unknown parameters (which include the joint distribution of item-specific
costs). The equilibrium characterization of that multi-dimensional model would be quali-
tatively different and more complicated; and its robust identification remains a challenging
open question.

3In a related but different environment, Elyakime, Laffont, Loisel, and Vuong (1997) takes a similar
approach and uses complete-information Nash bargaining as an approximation of the acutal information
structure for the sake of model tractability. Larsen (2014) estimated a bargaining game with two-sided
incomplete information that follows ascending auctions, using insights from the implications of a Bayesian
Nash equilibrium. The equilibrium characterization under the auction format he considers is qualitatively
different; and his approach does not apply in our setting of lowest-price procurement auctions given the
data available.
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3 Identification

We consider model identification in an environment where the data report the auction
payment V , the initial contract designs X, as well as the adopted new designs X∗ and
negotiated transfers Y if the new design is adopted. We explain how to use the joint
distribution of these variables to recover the model parameters π, a, γ, FC|X and FX∗,X̃ . To
do so, we use the implications of buyer and contractor rationality in equilibrium as well as
Nash Bargaining. Our identification method applies conditional on contract heterogeneity
observed in data and the number of auction participants N . While presenting our method
in this section, we suppress both variables in the notation for simplicity.

3.1 Buyer and contractor strategies

The model is identified up to a monotone transformation of the buyer’s signal X̃ at
best. (See the online appendix of this paper for a formal statement and proof.) Thus

without loss of generality we normalize the distribution of X̃ to a standard uniform over
[0, 1]. Let D = 1 if the new design X∗ is adopted with a negotiated transfer, and 0
otherwise. This dummy variable is reported in the data.

The buyer’s strategy α∗(·) is identified because its monotonicity implies that α∗(τ) =
xτ for all τ ∈ [0, 1], where xτ is the τ -th quantile of the initial designs reported in the
data. Besides, the monotonicity of α∗ implies

FX∗|s(X,X∗)>0,X̃=τ (x
∗) ≡ Pr{X∗ ≤ x∗|X̃ = τ, s(X,X∗) > 0} = Pr{X∗ ≤ x∗|X = xτ , D = 1}.

(4)
for all x∗ and τ ∈ (0, 1). Hence the distribution of the new design conditional on the
contract revision and the buyer’s signal is identified.

3.2 Adjusted costs for contractors

Contractors bid strategically in the procurement auction, knowing that additional
gains are possible due to contract revision. Thus we can use a standard argument in
Guerre, Perrigne, and Vuong (2000) to recover the (endogenous) adjusted costs for con-
tractors in the auction based on the initial design X. Such costs include a downward
adjustment from actual costs Ci, which take into account the contractors’ holdup on the
buyer. That is, the adjusted cost for a contractor i under an initial design x is

C̃i ≡ Ci − δ(x;λ∗), (5)

where δ(x;λ∗) is the ex ante share of net surplus due to contract revision in equilibrium.
To do so, first note that for a given pair of the initial design x and equilibrium belief

λ∗, the contractor’s hold-up on the buyer δ(x;λ∗) is constant. Thus we can define a
hypothetical low-price procurement auction without incompleteness, where contractors’
costs are i.i.d. draws from the distribution of adjusted costs C̃i given x and λ∗. Let β̃(·, x)
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denote the contractor strategy in symmetric monotone psPBE in such a procurement
auction with no incompleteness. That is,

β̃(c̃i, x) = arg max
b∈R+

Pr

{
min
j 6=i

β̃(c̃j, X) ≥ b

∣∣∣∣X = x

}
(b− c̃i) for all x. (6)

The solution to (6) is related to the equilibrium strategy β∗ in the original game in (2)
through the equality β̃(c̃i, x) = β∗(c̃i + δ(x;λ∗), x) for all x. Therefore we can use a
standard argument from Guerre, Perrigne, and Vuong (2000) to invert β̃ and recover the
contractors’ adjusted costs c̃i from the distribution of quoted prices in the auction. (See
Lemma C1 in Appendix C.)

3.3 Social surplus

We recover the social surplus π using the buyer’s rationality in equilibrium, and the
link between negotiated transfers and γ, a, π in Nash Bargaining. This approach is robust
to the contractor’s belief off the equilibrium support of α∗(X̃ ). We maintain that for all

x̃ ∈ X̃ , the buyer’s solution to (3) admits a unique solution in the interior of X .4

In a symmetric monotone psPBE, a buyer with private signal x̃ chooses an initial
design x to maximize ex ante payoff π(x) + µ(x, x̃) − ϕ(x; β∗), where ϕ(x; β∗) is the
buyer’s expected payment under the design x when contractors follow the strategy β∗.
The first-order condition for an interior solution is:

ϕ′(α∗(x̃); β∗) = π′(α∗(x̃)) +
∂

∂x

[∫
{s(x,t)>0}

(1− γ)s(x, t)dFX∗|X̃=x̃(t)

]
x=α∗(x̃)

. (7)

That is, the optimal choice of initial designs must strike a balance between a buyer’s
marginal cost in expected auction payment and its marginal benefit in social surplus
under the initial design plus its ex ante share of net surplus from revision.

Recall that the negotiated transfer in Nash Bargaining is y = γφ + (1− γ)a. Substi-
tuting this equality into the first-order condition (7) and applying the Leibniz rule, we
show that the marginal effect of initial designs on the social surplus is:

π′(x) = [1− p∗(x)]−1

(
ϕ′(x; β∗) +

∫
{s(x,t)>0}

y1(x, t)dFX∗|X=x(t)

)
(8)

for all x on the equilibrium support of X, where p∗(x) ≡ Pr{D = 1|X = x} is the
probability that the contract is revised to the new design, and y1 denotes the partial
derivative of y with respect to its first argument. (See Appendix C for a formal statement
of conditions and a proof of this result.) The right-hand side of (8) consists of identifiable
quantities only. Both y(x, t) and ϕ(x; β∗) are directly identified in the data for all x on
the equilibrium support of X and new design t such that s(x, t) > 0; and the distribution

4If the solution to (3) is on the boundary of X for some x̃ ∈ X̃ , then our results hold with Xe defined
as {x ∈ XI : x = α∗(x̃) for some x̃ ∈ [0, 1]} where XI is the interior of X .
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of X∗ conditional on X = x is also identified over the set of new designs t with s(x, t) > 0.
Thus π′ is identified over the equilibrium support of X.

At best the social surplus π is identified up to location normalization. This is because
the equilibrium strategies and the negotiated transfers only depend on the the derivative
π′(·) and the difference in social surplus between the initial and new designs. Without
loss of generality, set π(x) = π0 for some constant π0, with x being the infimum of
the equilibrium support of X. Then we can recover the surplus function as π(x) =
π0 +

∫ x
x
π′(z)dz for all x on the equilibrium support.

3.4 Bargaining power and costs for contract revision

Recall that the negotiated transfer y is related to the bargaining power γ and the costs
for contract revision a as follows

y(x, x∗) = γ[π(x∗)− π(x)] + (1− γ)a(x, x∗). (9)

With the (difference in) social surplus already identified, we use the joint variation in
y, x, x∗ to back out the remaining parameters γ and a. To do so, we maintain the following
condition on revision costs over the equilibrium support of X.

(A1) There exist x, ξ, x∗, ξ∗ ∈ X such that s(x, x∗) > 0, s(ξ, ξ∗) > 0, a(x, x∗) = a(ξ, ξ∗)
and π(x∗)− π(x) 6= π(ξ∗)− π(ξ).

Under this condition there exist two pairs of initial and new designs that lead to the
same costs for revisions but different incremental surplus. To locate such pairs, it is not
necessary to know the functional forms of a and π; shape restrictions on these functions
are sufficient. For example, suppose a is a k-th order polynomial of the difference x∗ − x
while π is a k′-th order polynomial in x with k, k′ ≥ 2. Then (A1) holds with any two
pairs on the equilibrium support of designs such that x∗ − x = ξ∗ − ξ and x 6= ξ.

For (x, x∗) and (ξ, ξ∗) that satisfy (A1), y(x, x∗)− y(ξ, ξ∗) = γ[π(x∗)−π(x)− (π(ξ∗)−
π(ξ))], where the differences in social surplus on the right-hand side is already identified
in the previous step. Thus the bargaining power parameter γ is identified. With γ, π
recovered, the revision cost a is also identified from (9) for all x and x∗ on the equilibrium
support of X with s(x, x∗) > 0.

3.5 Holdup on the buyer

To quantify the contractor’s holdup on the buyer and the distribution of costs for
contractors, we need to extend the identification of π over the set of designs

Xs ≡ Xe ∪ {x∗ : ∃x ∈ Xe s.t. s(x, x∗) > 0},

where Xe ≡ {x : α∗(x̃) = x for some x̃ ∈ [0, 1]} denotes the equilibrium support of the

initial design α∗(X̃ ). We also need to recover the revision costs a over the set of pairs
{(x, x∗) : x ∈ Xe and s(x, x∗) > 0}. To do so, we use the following condition:
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(A2) There exists a real-valued, differentiable function ã such that a(x, x∗) = ã(x∗ − x)
for all x, x∗ ∈ X .

Under this condition, a1(x, x∗) + a2(x, x∗) = 0, where aj is the partial derivative of a
with respect to its j-th argument. This provides a useful link between the marginal effect
of designs on observed transfers and that on the social surplus. That is,

∂
∂t
y(t, x∗)|t=x + ∂

∂t
y(x, t)|t=x∗ = γπ′(x∗)− γπ′(x)

for all (x, x∗) such that x ∈ Xe and s(x, x∗) > 0. This equality allows us to recover
the marginal effect π′(x∗) outside the equilibrium support of initial design (i.e., at x∗ ∈
Xs\Xe). Thus we can recover the cost of contract revisions and the contractor’s holdup
on the buyer, using this and the knowledge of other elements identified earlier, such as the
equilibrium belief and bargaining power. Furthermore, with knowledge of the contractor
holdup we can recover the distribution of actual costs from that of the adjusted costs
identified earlier. (See the corollary in Appendix C for details.)

3.6 Discussions

3.6.1 Alternative identifying conditions

There are alternative restrictions on a and π that are sufficient for identifying the
bargaining power. For example, suppose that for some x0 and x∗0 the level of the adjust-
ment cost is known: a(x0, x

∗
0) = a0 where s(x0, x

∗
0) > 0. Let y0 and φ0 denote the ob-

served transfer y(x0, x
∗
0) and incremental surplus φ(x0, x

∗
0) respectively, where φ(x0, x

∗
0) ≡

π(x∗0) − π(x0) is already identified. Then knowledge of (x0, x
∗
0, a0) allows us to recover

γ = (y0 − a0)/(φ0 − a0).
Another alternative condition is when the incremental cost is homogenous of degree

one while the incremental surplus has non-constant (diminishing or increasing) returns to
scale. In this case, consider any two pairs with positive net incremental surplus (x1, x

∗
1)

and (x2, x
∗
2) ≡ (tx1, tx

∗
1) with a known constant t > 0. Let yk, φk, ak be shorthands for

the functions y, φ, a evaluated at (xk, x
∗
k) for k = 1, 2. Because the incremental cost a is

homogeneous of degree one, we have a2 = ta1 and

(y2 − γφ2)/(y1 − γφ1) = t,

which implies γ is identified as (y2 − ty1)/(φ2 − tφ1). (The non-constant returns to scale
in the incremental surplus φ ensures the denominator is non-zero.)

Finally, if the model assumes a parametric form of π and a, then we do not need the
exclusion and shape restrictions in (A1)-(A2) to point identify the bargaining power and
recover π and a off the equilibrium support.

3.6.2 Exogenous participation

So far we have maintained that the number of bidders N is known to the contractors
as well as the buyer during the auctions. Athey and Haile (2007) argued (in Section
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6.3.3.) that in some procurement auctions the contractors may in fact know which of
their competitors have the capability to compete for a given contract or which firms have
been invited to bid. Bajari, Houghton, and Tadelis (2014) maintained this assumption in
their analysis of the highway procurement auctions by CalTrans.

In other contexts, the actual number of auction participants N is not public infor-
mation to the parties involved in the auction. Nevertheless our identification strategy
remains valid in such cases as long as the variation in N is exogenous. (Athey and Haile
(2007) provides an example of how such exogenous variation arises in a model where bid-
ders’ entry decisions are related to costly signal acquisition.) With the actual distribution
of N being common knowledge among the buyer and the contractors, the existence of
symmetric monotone psPBE {α∗, β∗} follows from an argument similar to the proof in
Appendix B. The only necessary change is that the ex ante return for the contractors and
the ex ante payment by the buyer need to integrate out the number of bidders using the
commonly known distribution of N .

As for identification of the model when N is not known to the bidders, the results
on identifying the distribution of the new design conditional on contract revision and
the buyer’s signal is built on the monotonicity of the buyer’s strategy. Thus the results
remain valid under any symmetric monotone psPBE in a model with bidders’ uncertainty
about participation. Also, the result about recovering the adjusted costs of contractors
holds when the contractors and the buyer are uncertain about the participation, provided
the data report the prices quoted by all contractors in an auction. In this case, Athey
and Haile (2007) showed the markup in the inverse bidding strategy needs to incorporate
the uncertainty about participation. This is done by integrating out N using the actual
distribution of the number of bidders, which is common knowledge among all parties and
is directly recoverable from the data (see the equations (6.23) and (6.24) in Athey and
Haile (2007)).5 The identification of π, a and γ then follows from an argument similar to
that presented above.

It remains an open question how to identify a model where decisions to participate
in auctions are selective in the sense that the distribution of costs for active participants
differs from the unconditional cost distribution in the population (e.g., if entry is based
on a preliminary signal that is correlated with private costs to be drawn in the bidding
stage). We leave this topic for future research.

4 CalTrans Auctions: Background and Data

4.1 Data

The California Department of Transportation (CalTrans) is a government department
in the State of California that is responsible for the planning, construction, and main-
tenance of public transportation facilities such as highway, bridge, and rails. It awards

5Furthermore, Song (2006) showed that identification of inverse bidding strategy in first-price pro-
curement auctions, where neither the bidders nor the researcher observe the set of actual participants, is
also possible even if only the winning bid and the second lowest bid are reported in the data.
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highway construction projects to contractors through lowest-price procurement auctions.
Before each auction, CalTrans announces the initial design of the contract in the form
of an engineer estimate X for total project costs. These engineer estimates are reported
as the dot product of the quantity for each category of inputs and their per-unit prices.
Once informed of engineer estimates, the contractors draw private costs for completing
the project and quote their prices. The contractor who quotes the lowest price is awarded
the contract. In most cases, CalTrans and the auction winner end up with an agreement
to adopt a new specification X∗ after the auction, and additional transfers in the form
of adjustment, deduction or payment for extra work are made through negotiation. We
measure the change in the specification as X∗ −X.

Some institutional facts indicate that CalTrans chooses an initial specification to max-
imize its ex ante payoff. For example, CalTrans’ Highway Design Manual (2015) states
that it is necessary to take into account uncertainty about the costs and welfare in the
design (specification) to be implemented. In practice, engineers who prepare the esti-
mates do anticipate project uncertainty, such as changes proposed by the winning con-
tractor (Project Risk Management Handbook: A Scalable Approach, CalTrans, 2012) and
stochastic quotes from contractors (CalTrans Estimating Practices).

We use the same source of data as Bajari, Houghton, and Tadelis (2014). The data
include 5, 908 bids submitted by contractors in 1, 306 procurement auctions by CalTrans
between 1995 and 2000. Over 90% of the contracts in the data receive 2 to 9 quotes
from contractors. For each contract, the data report the initial specification (engineer
estimates), the actual specification adopted (calculated using the Blue Book prices pub-
lished in the Contract Cost Data Book (CCDB) and the actual quantities of items used
for the project), and the negotiated transfer after the auction.6 The data record zero
transfer if no new specification is adopted after the auction. The data also report the
bids submitted by all contractors in each auction, and cost-related characteristics for the
contractors. These include the distance between the contractor’s location and the work
site for the project (dis), a dummy variable that equals one if the contractor is a “fringe”
competitor (fri), which is defined as a contractor that has won less than one percent of
the value of contracts awarded in the data, and the contractor’s utilization rate defined
as the ratio of its backlog over its capacity (uti).

In addition, we classify the contracts into two types based on the project description.
Type-one contracts (job = 1) involve major construction or rebuilding (e.g., replace bridge
or widen highway, etc). Type-zero contracts (job = 0) only require relatively minor or
decorative tasks (e.g., realign curves, install traffic signals or other accessories, etc).

[Insert Table 1 here]

Table 1 presents the summary statistics for our data. The average transfer due to
contract revisions after the auction is about $258, 000 per contract, which is about 9.67%

6Following Bajari, Houghton, and Tadelis (2014), we calculate the total negotiated transfers after
the auctions by adding up transfers under three categories in the data: “adjustment”, “deduction” and
“extra work”.
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of the average size of the final specification implemented after the auction. Among all
contracts, 94.10% (1,229 cases) reported non-zero transfers negotiated after the adoption
of a new design following the auction, while 5.90% (77 cases) report zero transfer. Type-
one (major construction) jobs account for 37.9% of all contracts with an average transfer
of $280, 775. Type-zero contracts have an average transfer of $243, 657. For each auction,
we use the proportion of fringe contractors competing in the auction (afri) and the
average utilization rate and distance across contractors (auti and adis) as contract-level
characteristics. For each contractor in an auction, we also record the minimum distance to
the job site (rdis) and the minimum utilization rate among its competitors (ruti). Table
1 also reports the summary statistics of these contract- and contractor-level variables.

4.2 Non-structural evidence and motivating facts

We start with some descriptive analyses of how the transfers negotiated after the
auction are related to contract specification and characteristics. Figure 1 is a scatter plot
of negotiated transfers (Y ) against the size of contract revisions (X∗ − X) in the data.
As expected, the size of contract revision has a substantial impact on the distribution of
negotiated transfers. More formally, pairwise Kolmogorov-Smirnov tests for the equality
between the distributions of negotiated transfers conditional on the low, medium and high
terciles of (x∗ − x) all reject the null at 1% level.

[Insert Figure 1 here]

Figure 2 further illustrates the dependence of transfers on the size of revision, con-
ditioning on contract characteristics such as the proportion of fringe competitors (afri),
and the average utilization rate among competitors (auti), where both afri and auti are
discretized into intervals defined by their lower, middle and upper terciles. The scatter
plots in Figure 2 reveal several distinctive patterns that motivate our structural model
in Section 2. First, the negotiated transfers vary significantly across contracts with dif-
ferent characteristics, even after controlling for the size of contract revision. We compare
the two distributions of transfers in each column plotted in the figure and find that in
each of the four cases, the p-value from a Kolmogorov-Smirnov test is less than 0.05.
These suggest that the negotiated transfers vary significantly across contracts with differ-
ent characteristics (such as afri and auti), even after controlling for the size of contract
revision.

[Insert Figure 2 and Table 2 here]

Second, there is evidence that the size of contract revision affects the transfers nonlin-
early and through its interaction with contract characteristics. This is also evident from
Figure 2, which shows the impact of afri and auti on transfers differ across various sizes
of contract revisions. For instance, the subplots in the third and fourth column show that
for lower and upper terciles of afri, the size of revision affects the transfers similarly for
negative revisions, while such effect differs for positive revisions.
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Table 2 further quantifies the effect of various factors on the transfers by regressing
the latter on the contract characteristics and the size of contract revision (x∗ − x). The
quadratic term of the size of contract revision and its interaction with contract charac-
teristics are significant across all three model specifications. The type of work (job) has a
significant positive effect on the observed transfer, and the effect becomes less pronounced
as the size of the revision increases. The number of bidders, the proportion of fringe bid-
ders in an auction, and the average utilization rate of participants (nbid, afri, auti) all
affect the transfer through their interaction with the initial and the new specification.
These results indicate that the size of specification change and contract characteristics
affect the transfers significantly and nonlinearly. In addition, the impacts of the charac-
teristics on the transfer depend on the size of specification change.

[Insert Table 3 here]

Third, there is little correlation between the contract characteristics and the size of
specification change per se. In Table 3 we regress the size of specification changes on the
contract characteristics nbid, job, afri, auti and adis. We find that these characteristics
are jointly insignificant at the 5% level across all three specifications. Combining the
results from Table 2 and 3, we conclude that contract characteristics affect the negotiated
transfers through some channel other than a direct impact on the size of contract revision.
This further supports the setup of our model in Section 2, where contract characteristics
affect the transfers through the contractor’s bargaining power γ, but not via any direct
impact on the size of specification change.

The model in Section 2 is motivated in part by these stylized facts in the CalTrans
highway procurement data. It allows us to disentangle the roles of various factors deter-
mining the contract revision, the negotiated transfers as well as the auction payment.

5 Econometric Implementation

We estimate a parametric model which accommodates the heterogeneity in the con-
tracts and sellers in the data. Our results in Section 3 are limited to the benchmark case
with no unobservable structural errors that are known to the buyer and sellers. Nonpara-
metric identification of an econometric model which incorporates these structural errors
is an open question. In this section we adopt a parametric approach by exploiting the re-
strictions on the functional forms of the model elements in order to recover the structural
parameters.

5.1 Parametric specifications

For simplicity we drop the indices of a contract j and a contractor i in the notation.
The bargaining power of a contractor in the negotiation after the auction is:

γ(w; %) = exp(w′%)/[1 + exp(w′%)], (10)
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where w ≡ [job, nbid, afri, auti, adis] is the vector of contract characteristics, with nbid
being the number of contractors who participate in the auction. The vector w consists of
contract/auction characteristics known to CalTrans and contractors at the time of their
decisions.

The specification in (10) is consistent with the reduced-form evidence in Section 4 that
the contract/auction characteristics (such as job type and the intensity of competition)
affect transfers through some other channel than the size of contract revision. Under this
specification, the bargaining power as perceived by CalTrans and contractors in the auc-
tions does not depend on ex post individual characteristics of the auction winner, whose
identity is unknown before the auction is concluded. We run a regression of negotiated
transfers on the winners’ characteristics (fringe, utilization and distance), the specification
change x∗−x, and the contract characteristics job, nbid , afri, auti and adis. The results
suggest that the auction winner’s characteristics do not affect the transfer significantly
across different model specifications.

The transfer Y due to Nash Bargaining is

Y = D [γφ+ (1− γ)a+ ε] , (11)

where
D = 1{φ− a+ η > 0} (12)

is the dummy for contract revision, and (ε, η) are bivariate normal with zero mean, stan-
dard deviation (σ, 1), and a correlation coefficient ρ. The change in social surplus due to
contract revision is π(x∗, job; θ)− π(x, job; θ), where

π(x, job; θ) = θ1x+ θ2(x× job) + θ3x
2; (13)

and the costs for revising the contract is

a(x, x∗, job; θ) ≡ θ0 + θ4(x∗ − x) + θ5(x∗ − x)× job+ θ6(x∗ − x)2, (14)

where θ0 is the fixed cost. The errors (ε, η) capture measurement noises, or any idiosyn-
cratic factors that affect the negotiated transfer or the joint decision to revise the contract,
but that are orthogonal to the initial and new specification (e.g., additional compensa-
tion for delay in payment). Under (13) the social surplus depends on the job type and
specification, but not the characteristics of the auction winner. The costs for revising the
contract a(·) include the adaptation costs in Bajari, Houghton, and Tadelis (2014).

The specifications in (13) and (14) are supported by the reduced-form patterns in
Table 2 (as discussed in Section 4). In addition to the sources of variation we use for non-
parametric identification in Section 3, parametric restrictions in this section also provide
further identifying power to recover model elements. We discuss the identification of the
parametric model in the online appendix.

5.2 Two-step estimation of structural parameters

We estimate (θ, %, ρ, σ) via two steps. In the first step, we estimate some components
in θ by applying the probit procedure to (12) with a vector of explanatory variables [x∗−x,
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(x∗−x)×job, x∗2−x2, (x∗−x)2]. This returns estimates for (θ̂1− θ̂4, θ̂2− θ̂5, θ̂3, θ̂6) ≡ θ̂−1,2.
The second step is to estimate the remaining parameters τ ≡ (θ1, θ2, %, ρ, σ) using an
extremum estimator:

τ̂ = arg max
τ
{LJ(τ)−MJ(τ)} , (15)

where LJ is the log-likelihood for the transfers under contract revision, and MJ is based
on a set of moments derived from the first-order condition due to CalTrans’ optimization
in equilibrium as shown in (7).7 That is,

LJ(τ) ≡ J−1
∑

j
log Φ

(
Îs,j+

ρ
σ (yj−Îo,j)√

1−ρ2

)
+ log Φ′

(
yj − Îo,j

σ

)
− log σ − log Φ(Îs,j)

where j is an index for contracts, Φ and Φ′ denote standard normal cdf and pdf, and

Îo,j ≡ γjφ̂j + (1− γj)âj and Îs,j ≡ φ̂j − âj

with γj ≡ γ(wj; %), φ̂j ≡ π(x∗j , wj; τ, θ̂−1,2)−π(xj, wj; τ, θ̂−1,2) and âj ≡ a(xj, x
∗
j , wj; τ, θ̂−1,2);

and
MJ ≡ J−1

∑
j
[ϕ̂1(xj, wj)− π̂1(xj, jobj; τ)− µ̂1(xj, x̃j, jobj; τ)]2

where ϕ̂1, π̂1, µ̂1 are estimates for the marginal effect of x on ϕ(x,w), π(x, job) and
µ(x, x̃, job) (which is defined as E[(1 − γ(W ))s+(x,X∗, job)|X̃ = x̃, job]); and x̃j ≡ r if
xj is the r-th quantile of the initial specification in the sample. Note that here µ(·) is
defined as the buyer’s ex ante share of the net surplus conditional only on the job type,
rather than the full information (x, x̃, w) available to the buyer prior to the realization of
new design. To calculate ϕ̂1, first estimate a regression model of auction payment on x,
w and their interaction terms. (Note this ex ante payment does not depend on x∗ which
is unknown in the auction stage.) Then calculate ϕ̂1 by plugging in OLS estimates. To
calculate µ̂1, note that under our specification,

µ1(x, x̃, job; τ) = E[(1− γ(W ; %)|job]× E
[

Φ(s(X∗, x, job))
∂s(X∗, x, job)

∂x

∣∣∣∣ x̃, job] , (16)

where the first expectation is with respect to the identity of the auction winner, and
the second with respect to X∗ conditional on x̃. For each trial value τ , construct
µ̂1(xj, x̃j, jobj; τ) by plugging θ̂−1,2 into s and ∂s/∂x and taking the conditional sample
average to estimate the first term in (16), and then estimating the second term using simu-

lated observations of x∗ drawn from the estimated distribution of X∗ given X̃ = x̃j. Recall

that we normalize the distribution of X̃ to U(0, 1). The monotone strategy in equilibrium
implies that FX∗|X̃=α∗−1(x) equals FX∗|X=x. Conditional on X, the distribution of X∗ is

7An alternative to our estimation method would be to derive the first-order conditions of the log-
likelihood for the negotiated transfers, and stack them with the first-order condition from the buyer’s
optimization problem in a GMM estimator. This approach is algebraically demanding because the score
function of the log-likelihood of negotiated transfers is cumbersome (mostly due to our parametrization
of the bargaining power).
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approximately normal among revised contracts in the data. Hence we parametrize this
conditional density of X∗ as N((1+v)X, σ̃2X2), which implies (X∗−X)/X ∼ N(v, σ̃2) in
auctions with negotiated transfers. Our specification here is motivated by some reduced-
form evidence. By regressing x∗ and x∗ − x on (x,w), we find that the coefficients for
contract characteristics in w are statistically insignificant. We use a maximum likelihood
to estimate ν and σ̃. The second expectation is then calculated for each τ using simulated
draws of x∗ based on these estimates.

This two-step estimator is consistent for (θ, %, ρ, σ). First, θ−1,2 is consistently es-
timated via probit in the first step by a standard argument. Furthermore, under our
parametrization, the true τ is a unique maximizer of the probability limit of LJ . (See the
online appendix for details.) Next, note MJ is a sample analog for

E

{[
ϕ1(X,W )− π1(X, job; τ)− µ1(X, X̃, job; τ)

]2
}

, (17)

which is minimized to zero at the true parameters under the first-order condition of
CalTrans’ optimization in equilibrium as shown in (7). In the equation above, the ex ante
payment ϕ(x,w) depends on the contract characteristics w and is directly identifiable
in data. Buyers’ optimization in equilibrium implies that the true parameter τ is a
minimizer of (17). Hence the true parameter τ is a unique maximizer of the probability
limit of LJ −MJ in the second step.

Because the estimand in (15) is a smooth function of the sample analogs, the two-step
extremum estimator is asymptotically normal under regularity conditions. (If we were to
follow the asymptotic plug-in approach for inference, then the asymptotic variance of τ̂
would need to include a term that accounts for the first-stage estimation error from the
probit procedure.) In practice, we use the bootstrap procedure to construct the standard
error. To implement the maximization routine in the second step, we pick an initial
value for τ by estimating a two-stage MLE that maximizes LJ alone (which produces a
consistent estimator for τ).

5.3 Estimation of contractor costs and holdup

Recall that δ(x;λ∗) = Eλ∗ [γs+(x,X∗)|X = x] and y − a = γs whenever s > 0.
Let q(x, job) denote the probability that a contract is revised with a negotiated transfer
(D = 1) conditional on information available to contractors in the auction. Let fP |Z(·|zj,k)
and FP |Z(·|zj,k) denote the density and the distribution of bids conditional on bidder k’s
characteristics in project j. From (5) and (6), we obtain the cost of contractor i in project
j, cj,i in equilibrium,

cj,i = pj,i−

(∑
k 6=i

fP |Z(pj,i|zj,k)
1− FP |Z(pj,i|zj,k)

)−1

+E [Y − a(xj, X
∗, jobj)|xj, zj,i, Dj = 1] q(xj, jobj),

(18)
where zj,i ≡ [frij,i, utij,i, disj,i, jobj, rutij,i, rdisj,i] and rutij,i, rdisj,i are minimum dis-
tance and utilization rate among the competitors against i. Note that the first two terms
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on the right-hand side of (18) constitute the inverse bidding strategy in a standard low-
price procurement auction with asymmetric sellers. (see e.g., Bajari, Houghton, and
Tadelis (2014)). More specifically, the first two terms in (18) identify the adjusted costs

C̃i as defined in (5), which accounts for the seller’s expected share of net surplus from
contract revision; the third term in (18) identifies the downward adjustment δ(·) in (5),
using the Nash bargaining solution characterized in (1). Let ∆j,i denote the conditional
expectation of Y − a in (18). It conditions only on xj and zj,i because the contractor’s
ex ante share of the net surplus depends on contractor characteristics known prior to the
auction.

In (18), we adopt a logit specification for the probability of contractual incompleteness
q(xj, jobj;ϑ). This probability differs from (12) in that the former specifies the ex ante
probability of contract revisions, which does not condition on ex post information such
as X∗. Denote the maximum likelihood estimator in this step by ϑ̂.

We model contractors’ bidding strategies (normalized by engineer estimates) via the
following regression:

pj,i
xj

= g(zj,i; ν) + ej,i, (19)

where g(·) is linear in ν, and ej,i is independent from zj,i. As in Bajari, Houghton, and
Tadelis (2014), the specification conditions on the number of contractors in an auction
(which is suppressed in notation), and allows for heterogeneity in the structural error
via the contract size xj.

8 We adopt a pooled-OLS to estimate the parameter in g(.; ν)
conditional on the number of contractors in the auction. Let ν̂ and êj,i be the estimated
parameters and the residuals, respectively. We then use these estimates to estimate FP |Z
and fP |Z . To see how, note that for a given number of contractors, FP |Z equals:

FP |Z(pj,i|zj,i) = Pr{g(zj,i; ν) + ej,i ≤ pj,i/xj} = Fe(pj,i/xj − g(zj,i; ν)),

where Fe(·) is the distribution of ej,i for contracts with the same number of bidders as
contract j (we suppress n in FP |Z and Fe to simplify notation). The conditional density
of bids is:

fP |Z(pj,i|zj,i) ≡ ∂
∂p
Fe(pj,i/xj − g(zj,i; ν)) = fe(pj,i/xj − g(zj,i; ν))/xj.

To estimate FP |Z and fP |Z , we first obtain the empirical distribution F̂e and kernel density

f̂e of êj,i, then plug F̂e, f̂e and ν̂ into the two equations above. Let F̂P |Z and f̂P |Z denote
these estimates.

The expectation of Y − a is estimated as

∆̂j,i = Ê (Yj|xj, zj,i, dj = 1)− S−1
∑S

s=1
a(xj, x

∗
j,s, jobj; θ̂), (20)

8Note that the inverse bidding strategy for contractors is identified nonparametrically due to (18).
Hence in principle the reduced-form linear specification in (19) is not necessary for estimating bidding
strategies in large samples. We implement this regression form to estimate bidding strategies mostly due
to data constraints.
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where the first term (the conditional expected transfer) in ∆̂j,i is estimated using a single-
index specification and Ichimura’s semiparametric least squares in Ichimura (1993); the

second term in ∆̂j,i is a simulation-based estimate for the ex ante revision costs a con-
ditional on contractual incompleteness, initial specification and contract characteristics.
Specifically, x∗j,s are independent draws from the estimated density of x∗ given xj and
dj = 1.

We replace fP |Z , FP |Z , ∆j,i and q(xj, jobj) by their estimates f̂P |Z , F̂P |Z , ∆̂j,i and

q̂j ≡ q(xj, jobj; ϑ̂) to obtain the estimate of costs for bidder i in contract j:

ĉj,i = pj,i −

(∑nj

k=1,k 6=i

f̂P |Z(pj,i|zj,k)
1− F̂P |Z(pj,i|zj,k)

)−1

+ ∆̂j,iq̂j. (21)

A contractor’s holdup on the buyer is estimated as ∆̂j,iq̂j. A contractor’s markup is

defined as the difference between its ex ante payoff, estimated by pj,i + ∆̂j,iq̂j, and its
initial costs in the auction ĉj,i. We estimate the markup by the second term in (21).

6 Results

We start with a descriptive analysis of how the buyer’s initial payment in the pro-
curement auction is related to the contract characteristics. As explained in the next
paragraph, we find that the initial contract design has a positive nonlinear effect on auc-
tion payment, especially via interaction with contract characteristics. This corroborates
several key aspects in our model: that the contractor costs are stochastically increasing in
the contract design, that the contractors adopt monotone strategies, and that the contract
characteristics affect the auction payment through bargaining power and ex ante holdup
on the buyer.

[Insert Table 4 here]

Table 4 reports estimates from regressing the auction payment on contract charac-
teristics. In each specification, the initial design (engineer estimate) has a significant
positive marginal effect on the auction payment. There is also evidence in the third spec-
ifications that the effect diminishes as the engineer estimates increase. Another pattern
consistent across all specifications is that the contract/auction-level characteristics, which
include the job type, the proportion of fringe competitors (afri) as well as the average
distance and utilization rate of competitors (auti) and (adis), are all significant via their
interaction with engineer estimates. This is consistent with the notion that auction char-
acteristics affect contractors’ adjusted costs through the bargaining power of contractors
and ex ante holdup on the buyer. Also, it is worth mentioning that a higher average
utilization rate among the contractors tends to lower the auction payment. This indi-
cates that there is an economy of scale in the costs for contractors that work on multiple
contracts simultaneously.
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Our estimates in Table 5 indicate that the contractor tends to retain a substantial share
of the ex ante net surplus due to contract revision, and that on average the bargaining
power depends on the intensity of competition as well as the utilization rates of alternative
contractors.

[Insert Table 5 here]

The upper panel in Table 5 reports the average bargaining power of the contractor
in a negotiation following contract revisions, i.e., the mean of γ(wj; %̂) across contracts,
conditional on the job type (job = 1 for major work and 0 otherwise). In both cases, the
contractor has significant bargaining power against CalTrans. For example, in each of
the first two specifications, the contractor’s bargaining power is significantly higher than
50%, regardless of the job type. In the third and most comprehensive specification the
average bargaining power is 68.9% for major jobs and 79.3% for minor jobs.

The lower panel in the table reports the estimates for the mean marginal effect of
contract and contractor characteristics on bargaining power. According to the first spec-
ification, on average the bargaining power for a contractor is about 6% higher if it had
to defeat an additional competitor in the auction. This might be because a contractor’s
competitive advantage (such as cost or logistic efficiency) leads to more leverage in the
negotiation with CalTrans. The average utilization rate is important in explaining the
bargaining power in the third specification. Our estimates show that if the average utiliza-
tion rate in an auction is increased by 10%, then the bargaining power of the contractor
increases by 4.4%. This conforms with the intuition that a contractor has larger bar-
gaining power against CalTrans when its competitors are on average more occupied or
committed to other projects.

Our estimates in Table 6 indicate that there is an increasing return in the social surplus
for highway construction, and that the net incremental surplus from revisions is nonlinear
in the size of revisions.

[Insert Table 6 here]

Table 6 reports parameter estimates in the social surplus and incremental costs for
contract revision. The coefficient for the squared engineer estimates is significantly pos-
itive, suggesting some economy of scale in social surplus as the contract size increases.
We reject the null hypothesis that s is linear in (x∗ − x) (coefficients for x2 in π and
coefficients for (x∗ − x)2 in a are jointly zero) with a p-value less than 0.001 in the most
comprehensive specification. In addition, a Wald test for the joint significance of x and
x∗ in s also yields a p-value less than 0.001.

To quantify the effect of job types on the negotiated transfer, we use the estimates
in Table 6 to calculate the average difference between the truncated mean of transfer
(conditional on contract revision) for major contracts (job = 1) and minor contracts re-
spectively. This measures the ex ante marginal effect of the job type on the truncated
means, after integrating out other contract characteristics and the initial and final spec-
ification. For the most general specification, this estimated difference is $52, 000 with a
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bootstrap standard error of $20, 000. The tests under the other two nested specifications
also report statistical significance of job at the 1% level.

[Insert Table 7 here]

Table 7 estimates a logit model for contract revision q(xj, jobj;ϑ). Our estimates
illustrate that the engineer estimates are a significant determinant for contractual revi-
sion whereas job types are not. This conforms with the observation in Tirole (2009)
that the holdup problem occurs under the incomplete contracts where the probability of
incompleteness is determined by the endogenous choice of the buyer.

Table 8 reports the estimates for the ratio between markups and contractor costs.
We find that the markups are substantial (with a sample average of 10.6%), and are
slightly lower for contracts with substantial work (job = 1). Our estimates also reveal
how markups depend on other features of the auctions and contractors.

[Insert Table 8 here]

The markup ratios are lower in auctions involving more competitors, which is con-
sistent with our assumption that contractors are aware of the number of competitors in
auctions. Besides, the auction winners tend to bid with higher markups than the oth-
ers. One possible interpretation is that the cost for the auction winner is lower than the
other contractors, thus allowing it to quote competitive prices even with a high markup.
This might also explain why our estimates for markup ratios are slightly higher for major
competitors in the industry (non-fringe contractors).

About half of the contractors competing in the auctions are not committed to other
projects simultaneously (with zero utilization rates). The markup ratios for these con-
tractors are on average lower than those with positive utilization rates. Our estimates
suggest that the contractors with moderate or high utilization rates have greater markup
ratios than those with lower utilization rates. On the other hand, the distance between the
contractor’s location and the job sites has no substantial effect on the estimated markups.

[Insert Table 9 here]

We now quantify the over-estimation of the markups if the effect of holdups from
incomplete contracts are ignored in estimation, so that the bids are interpreted as gen-
erated from equilibrium in standard lowest-price procurement auctions. Table 9 reports
estimates for markup ratios under these assumptions. The average markup ratio is esti-
mated to be 13.3%, which is 25.5% higher than the estimates in Table 8. We present the
estimates at different quantiles in Table 9. The markups are over-estimated up to 26.4%
(at the 25th quantiles of overall estimates) if contract incompleteness is not accounted
for.

We use the parameter estimates above to calculate the ratio between the contractor’s
holdup on CalTrans and the engineer estimates based on the initial contract design in
each auction. The average holdup ratio is 20.4% across contracts with revisions in the
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data. Figure 3 illustrates histograms of these estimated ratios conditional on the type of
contracts (major or minor) and contractor participation. The histograms show that these
ratios tend to be higher for contracts involving major jobs. The average ratio is 21.6% for
major projects and 19.5% for minor projects. The difference is statistically significant at
1% level based on a two-sample Kolmogorov-Smirnov test. The estimates also indicate
that the ratios are higher for contracts involving more bidders.

[Insert Figures 3 here]

To see how contract characteristics impact the holdups, we regress the estimated
holdup ratios on auti, afri, nbid and job conditioning on bidder participation and report
their marginal effects on holdups in Table 10. Across all specifications, the proportion of
fringe competitors in an auction (afri) has a significantly positive effect on the holdup
ratio. For example, the holdup ratio is about 13.4%-14.4% higher in the auctions that
only involve fringe contractors than those only involving non-fringe contractors when the
number of bidders n ∈ {3, 4, 5}.

[Insert Table 10 here]

The impact of the job type of contracts (job) on holdup depends on the intensity
of competition. For auctions with moderate competition (3 ≤ n ≤ 8), which accounts
for more than 76% of contracts in the data, the job type has a significantly positive
impact on holdup ratios. This is consistent with our structural estimates above. Table
7 suggests that the contract type has no significant effect on the ex ante probability
for contract revision; Table 6 indicates that the net surplus from revisions is higher for
contracts that involve major jobs (the average marginal effect of job type on revision
surplus is statistically positive at 5% level). Taken together, those estimates explain why
the holdup ratios are higher in contracts that require more substantial work.

7 Cost-plus versus Fixed-price Contracts

In practice, a common alternative to the “fixed-price” contract analyzed above is a
“cost-plus” contract.9 Cost-plus contracts do not specify any fixed payment, but reim-
burse contractors for actual costs incurred plus a profit margin negotiated ex ante (either
in a lump-sum or pro-rata form). Cost-plus contracts are popular in the U.S. defense
industry, where the total value of cost-plus contracts is $78 billion for the fiscal year
2007.10

Using estimates from Section 6, we calculate the surplus for buyers under cost-plus
contracts with a negotiated lump-sum profit margin, and compare it with those estimated
for fixed-price contracts in the data.

9The term “fixed-price” refers to the fact that, prior to the negotiation of transfers due to contract
revisions, the payment to the contractor determined in the auction is fixed.

10Source: “Defense Industrial Initiatives Current Issues: Cost-Plus Contracts”, by Joachim Hofbauer
and Greg Sanders, Center for Strategic and International Studies, 2008
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7.1 Basic setup

We consider a counterfactual context where CalTrans and the contractors have com-
mon knowledge about ex ante uncertainty of new design X∗. Let j denote the index
for projects reported in the data. A contractor i competes for a project j by quoting a
lump-sum profit margin in a cost-plus contract ζj,i; CalTrans awards the contract to the
seller with the highest ex ante surplus for the government. Note that for the government,
its expected cost for the project varies with the identity of the contractor it selects.

For each project j and contractor/seller i, let z̃j,i ≡ (jobj, utij,i, frij,i, disj,i) denote
the project and contractor characteristics in zj,i that affect private costs. The buyer’s ex
ante surplus from awarding the contract to i is∫ [

π(t, jobj)− E(C∗j,i|X∗j = t, z̃j,i)
]
dFX∗j |z̃j,i(t)− ζj,i (22)

where π is the social surplus, FX∗j |z̃j,i the ex ante distribution of the new design conditional
on z̃j,i and C∗j,i the costs for the new design X∗j . The buyer chooses a contractor to
maximize ex ante surplus in (22). Contractors compete by quoting profit margins in
cost-plus contracts. A contractor i’s profit from quoting ζj,i is:

ζj,i × 1{E[π(X∗j , jobj)− C∗j,i|z̃j,i]− ζj,i ≥ E[π(X∗j , jobj)− C∗j,i′ |z̃j,i′ ]− ζj,i′ ∀i′ 6= i}
= ζj,i × 1{ζj,i ≤ ζj,i′ + E(C∗j,i′|z̃j,i′)− E(C∗j,i|z̃j,i) ∀i′ 6= i},

where 1{·} is the indicator function. The distribution of X∗j and C∗j,i are common knowl-
edge among contractors. This is a simultaneous game of complete information between
contractors. We calculate the buyer surplus under a Nash Equilibrium in which the
winner is i = arg mink E(C∗j,k|z̃j,k) with a quote ζj,i ≡ E(C∗j,i′|z̃j,i′) − E(C∗j,i|z̃j,i) where
i′ = arg mink 6=iE(C∗j,k|z̃j,k).11

Under cost-plus contracts, the surplus for the buyer is

E[π(X∗j , jobj)− C∗j,i − ζj,i|wj], (23)

where i denotes the winner who has the lowest costs for design X∗ ex ante, and wj consists
of contract characteristics (autij, afrij, adisj, nbidj, jobj).

Buyer surplus under fixed-price contracts is

E[π(Xj, jobj)− ϕ(Xj,Wj;λ
∗) + µ(Xj, X̃j,Wj)|wj], (24)

where µ is the buyer’s expected share of net surplus due to the new design after conceding
the holdup to the contractor, and ϕ is the expected auction price under initial specification
Xj and contract characteristics. For a meaningful comparison, we maintain in our analysis
that the distribution of X∗j given wj in counterfactual cost-plus contracts is the same as
that in the sample.

11We assume a random tie-breaking if there are multiple contractors who have the same, lowest
expected costs. Such an ad hoc tie-breaking rule has no impact on the characterization of equilibrium
and therefore subsequent counterfactual analysis.
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The ranking of buyer surplus across these two types of contracts is ambiguous because
of the trade-offs involved. First, under cost-plus contracts the auction winner is the one
with the lowest ex ante costs under the design X∗ while under a fixed-price contract
the auction winner is the one with the lowest ex post costs under the initial design X,
after adjusting for the holdup. Second, under cost-plus contracts the buyer collects the
expected gross surplus E[π(X∗j , Jobj)|wj]; whereas under fixed-price contracts the buyer
concedes a proportion of the net surplus to the contractor, thus collecting an expected
gross surplus of E[π(α∗(X̃j), jobj) + µ(α∗(X̃j), X̃j,Wj)|wj]. Finally, the buyer’s expected
payment under cost-plus contracts is E[C∗j,i+ζj,i|wj], or ex ante second-lowest costs under
the new design. In contrast, the buyer’s expected payment under fixed-price contracts is
E[ϕ(Xj,Wj;λ

∗)|wj], where ϕ consists of the lowest costs under Xj and a markup that
is adjusted based on contractor expected share of net surplus. All in all, measuring the
difference in buyer surplus under these contracts is an open empirical question because of
these tradeoffs.

7.2 Comparison of buyer surplus

Our results of counterfactual analysis show that the buyer surplus under a cost-plus
contract is lower than that under the fixed-price contract for 71.7% of the projects reported
in the data. The average reduction in buyer surplus under the cost-plus contracts is
$382, 074, which is 13.6% of average engineer estimates. This implies that, for most of
the projects in the data, the buyer’s gains in the expected surplus under a fixed-price
contract are greater than the increase in its expected payment.

[Insert Figures 4 here]

Figure 4 reports the histograms of estimated differences in buyer surplus (that under
cost-plus minus that under fixed-price) in the auctions conditional on the job type and
on the number of bidders. While the job types do not seem to have any significant
impact on the difference in buyer surplus, a greater number of bidders tends to make the
distribution of the difference slightly positively skewed. To understand what is driving
this pattern, recall the number of bidders affects a buyer’s expected payment under both
forms of contracts through contractor strategies and the lowest expected costs. It also
affects buyers’ ex ante surplus under the fixed-price contract through the holdup. The
figure indicates that these trade-offs eventually work in favor of the buyer under fixed-price
contracts in most cases.

[Insert Table 11 here]

We regress the estimated differences in buyer surplus on contract characteristics, i.e.,
(auti, afri, job, adis), and report their average marginal effects in Table 11. First, across
all specification and level of bidder participation, the type of jobs have significantly neg-
ative impact on the difference in buyer surplus. That is, from a buyer’s perspective, a
fixed-price contract is ex ante more desirable relative to a cost-plus contract when the
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jobs involve major tasks (job = 1). For example, under the third specification, under
moderate competition (n ∈ {3, 4, 5}), the difference between buyer surplus is reduced by
$237, 000 (about 8.4% of average engineer estimates) when the contract involves major
jobs.

Second, cost-plus contracts compare more favorably with fixed-price contracts when
there is a higher proportion of fringe competitors in the auction. With moderate bidder
participation (n ∈ {3, 4, 5}), the difference in surplus would increase by $549, 000 if the
competition is between fringe contractors alone. This effect is explained by the difference
in contractor costs and bargaining power between fringe and non-fringe competitors.

Third, the average marginal effect of utilization rates on the difference reported in
Table 11 is positive, implying that the advantage of fixed-price contracts on buyer’s surplus
over cost-plus contracts diminishes if contractors are more occupied. This can be explained
by utilization’s positive impact on contractors’ bargaining power presented in Table 5:
Higher bargaining power of the contractor due to higher average utilization rates benefits
contractors in post-auction bargaining but hurts the buyer. In addition, more occupied
contractors may have less incentives to exert efforts and lower costs in fixed-price contracts
and this negatively affects the advantage of fixed-price over cost-plus contracts.

Our analysis of buyer surplus provides a benchmark comparison between fixed-price
and cost-plus contracts in that it abstracts away from any disincentive for cost-saving
under cost-plus contracts. If the contractor costs under the cost-plus format is stochas-
tically higher than fixed-price contracts, the difference in buyer surplus would be even
lower than what we estimate. Hence our benchmark comparison can be interpreted as an
upper bound on the difference in buyer surplus if there is cost-saving under fixed-price
contracts. Our estimates show this upper bound is negative for most cases in the data.

8 Concluding Remarks

This paper studies procurement auctions with incomplete contracts. We introduce
a model that endogenizes a buyer’s initial specification of the contract, and maintain a
flexible information structure. The model rationalizes the decision to revise a contract
and the transfers negotiated via Nash Bargaining between the buyer and the auction
winner. We show that the model components are nonparametrically identified from the
contract prices, the bids, and negotiated transfers, and use the model to analyze CalTrans
auctions of highway procurement contracts. Our estimates shed lights on how contractors
respond strategically to contractual incompleteness, and what determines the size of the
holdup in highway procurement projects. We find that fixed-price contracts mostly yield
higher surplus for the buyer over cost-plus contracts when there is uncertainty about the
final design. A direction for future research is to use the method we propose to evaluate
the impact of incomplete contracts on the efficiency of mechanisms, e.g., whether revenue
equivalence still holds once incompleteness occurs. While our method is introduced in the
context of procurement auctions, it might be extended to other formats of pre-contractual
competition.
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Appendix

A Nash Bargaining in Post-auction Negotiation

Let v denote the auction price and c denote the auction winner’s ex post cost for
implementing the contract under the initial design x. The disagreement value (a.k.a.
reservation value) for the auction winner is

dc ≡ v − c

while the disagreement value for the buyer is

db ≡ π − v

with π being the social surplus under the design x. With a new feasible design x∗, the ex
post total net social surplus to be shared among the buyer and the auction winner is

u0 ≡ π∗ − a− c

where π∗ is the social surplus under x∗ and a is the incremental costs for delivering
the contract under x∗ (in addition to the cost c for delivering the contract under x).
With γ denoting the bargaining power of the contractor, the Nash Bargaining solution is
characterized by

max
uc,ub

(uc − dc)γ (ub − db)1−γ s.t. ub + uc ≤ u0.

By a standard argument,

uc ≡ γ(u0 − db) + (1− γ)dc = γs+ v − c

and
ub ≡ u0 − uc = (1− γ)s+ π − v

where s ≡ π∗ − π − a is the net incremental surplus. As stated in the text, we maintain
that the contractor covers the incremental costs a as they arise in construction while
the incremental surplus π∗ − π is eventually accrued to the buyer. Then the negotiated
transfer y needs to satisfy:

dc + y − a = uc and dp + π∗ − π − y = ub

which is equivalent to

y − a = γs and π∗ − π − y = (1− γ)s.

This proves that the negotiated transfer is as characterized in Section 2.
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B Existence of Symmetric Monotone psPBE

Our first step is to link the contractor beliefs to their bidding strategies in the auction
stage. Denote a generic contractor belief about the new design conditional on the initial
announcement by λ : X × X → [0, 1]. Let δ(x;λ) ≡ Eλ[γs+(x,X∗)|X = x], and the
notation Eλ(.) is a reminder that X∗ is integrated out with respect to the belief λ(X∗|X).

Let G(· | x;λ) denote the distribution of contractors’ adjusted costs C̃i(λ) ≡ Ci − δ(x;λ)
conditional on X = x and λ. That is,

G(t | x;λ) ≡ Pr{Ci − δ(x;λ) ≤ t | X = x}.

A standard argument such as that in Krishna (2009) show that a symmetric monotone
pure-strategy Bayesian Nash equilibrium exist in a procurement auction where contrac-
tors’ costs are drawn from G(· | X;λ). More specifically, let G̃ ≡ 1 − G so that G̃(c |
x;λ)N−1 ≡ Pr{minj 6=i C̃j(λ) ≥ c | x;λ} and 1− G̃(c | x;λ)N−1 ≡ Pr{minj 6=i C̃j ≤ c | x;λ}.
For all i = 1, 2, · · · , N , c ∈ C and x ∈ X ,

βi(c, x;λ) =

∫ c̄
c
sd[1− G̃(s | x;λ)N−1]

G̃(c | x;λ)N−1
, (B.1)

where c̄ denotes the supremum of C.
Next, we link contractor beliefs to the buyer’s expected payment and the buyer’s

choice of initial design. It follows from (B.1) that the buyer’s expected payment when
contractors hold belief λ is

ϕλ(x) ≡ ϕ(x; β(., x;λ)) = N

∫ c̄

0

βi(c, x;λ) Pr

{
min
j 6=i

C̃j ≥ c

∣∣∣∣X = x;λ

}
dG(c | x;λ)

= N

∫ c̄

0

sd
[
1− G̃(s | x;λ)N−1

]
−N

∫ c̄

0

sG̃(s | x;λ)d
[
1− G̃(s | x;λ)N−1

]
where the first term is NE

[
minj 6=i C̃j(λ)

∣∣∣X = x;λ
]
; and the second term is

N

∫ c̄

0

sG̃(s | x;λ)(N − 1)G̃(s | x;λ)N−2g(s | x;λ)ds

= (N − 1)

∫ c̄

0

sd
[
1− G̃N(s | x;λ)

]
= (N − 1)E

[
min
i
C̃i(λ)

∣∣∣X = x;λ
]

.

Because C̃i(λ) ≡ Ci− δ(x;λ), we can write the right-hand side of (B.2) as σ(x)− δ(x;λ),
where

σ(x) ≡ NE[C(1:N−1)|X = x]− (N − 1)E[C(1:N)|X = x],

with C(m:n) being the m-th smallest out of n independent draws from FC|X . Given the
contractor belief λ, the buyer’s optimization problem is:

α(x̃;λ) ≡ arg max
x∈X
{π(x)− σ(x) + µ(x, x̃) + δ(x;λ)} ,
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where π, σ and µ are belief-free in that they only depend on model primitives that are com-
mon knowledge to both the buyer and contractors. We maintain that E(mini=1,...,N Ci|X =
x) is differentiable in x over X for all N .

Suppose α∗ : X → X is the buyer’s strategy in a strictly monotone pure-strategy PBE,
and is differentiable. By the restriction of consistent beliefs on the equilibrium path of
initial announced design, λ∗(.|x) = FX∗|X̃=α∗−1(x)(.) for all x on the support of α∗(X̃). For
α∗(.) to be the buyer’s equilibrium strategy, it must be the case that for all x̃ ∈ X ,

π′(α∗(x̃)) + µ1(α∗(x̃), x̃) = σ′(α∗(x̃))− δ′(α∗(x̃);λ∗), (B.2)

where µ1(z, x̃) ≡ ∂µ(x, x̃)/∂x|x=z. Let

Λ(x, x̃) ≡ E[s+(x,X∗) | X̃ = x̃] =

∫
ω(x)

[π(x∗)− π(x)− a(x, x∗)] dF (x∗|x̃),

where ω(x) ≡ {x∗ : s(x, x∗) > 0} as in the text. Note that the functional form of Λ
depends on the common knowledge primitive FX∗|X̃=x̃ but not the belief of contractors.

By construction, µ(x, x̃) = (1− γ)Λ(x, x̃) and δ(x;λ∗) = γΛ(x, α∗−1(x)). Thus

δ′(α∗(x̃);λ∗) = γΛ1(α∗(x̃), x̃) +
γΛ2(α∗(x̃), x̃)

α∗′(x̃)
, (B.3)

where Λ1 (and Λ2) denote partial derivatives of Λ with respect to its first (and second)
argument respectively. Note that the function form of σ and Λ are determined by model
primitives FC|X and FX∗|X̃ respectively, and do not depend on the belief of contractors.
Substitute (B.3) into (B.2) to get

α∗′(x̃) = Ψ(α∗(x̃), x̃)

where Ψ : X × X̃ → R is defined as

Ψ(x, x̃) ≡ γΛ2(x, x̃)

σ′(x)− π′(x)− Λ1(x, x̃)
. (B.4)

We say a contractor’s conditional belief λ is ultra-pessimistic at x ∈ X if it assigns
no probability mass to new designs to the event that the new designs yield positive net
surplus. That is, ∫

1{x∗ ∈ ω(x)}dλ(x∗|x) = 0

where ω(x) ≡ {x∗ : s(x, x∗) > 0} as in the text. In other words, a contractor with
an ultra-pessimistic belief at x thinks Pr{s(X,X∗) ≤ 0|X = x} = 1, which implies
δ(x;λ) = 0 for all x ∈ X . Therefore, a buyer’s objective function when contractors hold
“ultra-pessimistic” beliefs is:

Ho(x, x̃) ≡ π(x) + (1− γ)Λ(x, x̃)− σ(x),

33



which is the buyer’s objective function when contractors hold an “ultra-pessimistic” belief
that Pr{s(X,X∗) ≤ 0 | X = x} = 1 for all x ∈ X . This is because δ(x;λ) = 0 if the belief
λ(.|x) is ultra-pessimistic at x.

Assumption B1. (Smoothness and Concavity) π, σ and Λ are differentiable and bounded

over their domains. For each x̃ ∈ X̃ , Ho is strictly concave in x over X .

It follows from Assumption B1 and the Theorem of Maximum that

Xo ≡
{
x : x = arg max

z∈X
Ho(z, x̃) for some x̃ ∈ X

}

is convex and compact in X . Let xoh (and xol ) denote the supremum (and infimum) of
Xo; xh (and xl) denote the supremum (and infimum) of X ; and x̃h (and x̃l) denote the

supremum (and infimum) of X̃ .

Assumption B2. (a) Ψ is continuous over X × X̃ ; and there exists L ∈ R++ such that

for all (x̃, x, x′) in X̃ ×X ×X , |Ψ(x′, x̃)−Ψ(x, x̃)| ≤ L |x′ − x|. (b) M(x̃h− x̃l) ≤ xh−xol ,
where M ≡ sup(x,x̃)X×X̃ Ψ(x, x̃) <∞.

Define the following ordinary differential equation with an initial condition:

α′(x̃) = Ψ(α(x̃), x̃) and α(x̃l) = xol . (B.5)

It follows from Assumption B2 and Picard’s Local Existence Theorem that there exists a
solution to (B.5) over X̃ ≡ [x̃l, x̃h]. The range for the solution is a subset of [xol , xh] under
Assumption B2.

Assumption B3. (Monotonicity) (a) For any pair x′ > x on X , FC|X=x′ first-order
stochastically dominates FC|X=x. (b) For each x ∈ X , Λ(x, x̃) is increasing in x̃. (c) For

each x̃ ∈ X̃ , π(x) + Λ(x, x̃) is non-increasing in x.

Lemma B.1 Under Assumption B1, B2 and B3, there exists a strictly monotone solution
α∗ : X̃ → X to (B.5).

Proof of lemma B.1. We first show that if the solution exists it must be strictly monotone
over its domain. By construction,

σ(x) ≡ N

∫ c̄

0

[1− FC|X=x(s)]
N−1ds− (N − 1)

∫ c̄

0

[1− FC|X=x(s)]
Nds.

Therefore

σ′(x) = −N(N − 1)

∫ c̄

0

∂FC|X(s|x)

∂x
[1− FC|X(s)]N−2FC|X(s)ds > 0,

where the last line is due to Assumption B3-(a) (that FC|X is stochastically increasing in
x). Together with Assumption B3-(c), this implies the denominator in the definition of
Ψ in (B.4) is positive for all x, x̃. Assumption B3-(b) then implies the numerator in (B.4)
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is also positive. Thus the solution to (B.5), if exists, must be increasing over X̃ . By the
Picard’s Existence Theorem, there exists a solution α∗ to (B.5) over X̃ ≡ [x̃l, x̃h] under
Assumption B2. �

Assumption B4. (Support Conditions) (a) For any (x, x̃) ∈ X×X̃ , the integral
∫

1{x∗ ∈
ω(x)}dFX∗|X̃=x̃(x

∗) > 0. (b) For some α∗ that solves (B.5), Xo ⊆ Xe ≡ {x : x = α∗(x̃) for

some x̃ ∈ X̃}.
We now define a symmetric monotone pure-strategy Perfect Bayesian Equilibrium as

follows:

α∗ solves (B.5); β∗ is defined in (B.1) with beliefs λ∗;

λ∗(.|x) = FX∗|X̃=α∗−1(x)(.) for x ∈ Xe; and λ∗(.|x) is ultra-pessimistic for x 6∈ Xe.(B.6)

Proposition B.1. Under Assumptions B1, B2, B3 and B4, the profile of strategies
and beliefs in (B.6) exists, and is a symmetric monotone pure-strategy Perfect Bayesian
equilibrium.

Proof of Proposition B.1. Existence of the profile (α∗, β∗, λ∗) in (B.6) follows from Lemma
B.1. It only remains to show that such a profile (α∗, β∗, λ∗) indeed forms a symmetric
monotone psPBE. That β∗ is the contractors’ best response given their beliefs λ∗ is shown
earlier in the text of this appendix. That α∗ is a solution to (B.5) ensures that the
buyer can not make profitable (local) deviation over the equilibrium path of X. Also by
definition, λ∗ is consistent on the equilibrium support of α∗(X̃).

It remains to check that the off-equilibrium beliefs in (B.6) guarantee that for any x̃
there is no profitable deviation of the buyer from α∗(x̃) to some x′ 6∈ Xe. To see this, first
note that under Assumption B4, x′ 6∈ Xe implies x′ 6∈ Xo. Thus there exists xo ∈ Xo so
that Ho(xo, x̃) ≥ Ho(x′, x̃). By construction,

Ho(z, x̃) ≤ π(z) + µ(z, x̃)− σ(z) + δ(z;λ∗),

where the inequality holds with equality for z 6∈ Xe (because δ(z;λ∗) = 0 for such z due to
ultra-pessimistic beliefs), and the inequality holds strictly for z ∈ Xe due to Assumption
B4-(a). Because xo ∈ Xo implies xo ∈ Xe under Assumption B4-(b),

π(xo) + µ(xo, x̃)− σ(xo) + δ(xo;λ∗)

> Ho(xo, x̃) ≥ Ho(x′, x̃)

= π(x′) + µ(x′, x̃)− σ(x′) + δ(x′;λ∗).

This implies x′ could not be the buyer’s optimal choice of initial design given the belief
λ∗. �

Discussion of Assumption B4-(b). We conclude this part of the appendix with primi-
tive conditions that are sufficient for the second support condition in Assumption B4. By
construction and the monotonicity of the solution to (B.5), α∗(x̃l) = xol = inf Xe = inf Xo,
and

xeh − xel = xeh − xol =

∫ x̃h

x̃l

Ψ(α∗(x̃), x̃)dx̃.
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Define αo(x̃) ≡ arg maxx∈X H
o(x, x̃) for all x̃ ∈ X̃ . Suppose the solution is in the interior

of X for all x̃. By the Implicit Function Theorem,

d

dx̃
αo(x̃) = −(1− γ)Λ12(αo(x̃), x̃)

Ho
11(αo(x̃), x̃)

for all x̃ such that arg maxx∈X H
o(x, x̃) is in the interior of X , where Ho

11 denotes the
second-order derivative with respect to its first argument and Λ12 denotes the cross-
derivatives. Assume Λ12 is positive over its domain. Then xoh − xol is bounded above by∫ x̃h
x̃l
α′o(t)dt. Therefore for Assumption B4-(b) to hold, it suffices to have

−(1− γ)Λ12(x, x̃)

Ho
11(x, x̃)

≤ (1− γ)Λ2(x, x̃)

σ′(x)− π′(x)− Λ1(x, x̃)

for all (x, x̃) ∈ X × X̃ . For example, the inequality in the display above holds when π
and a are close to being linear in x. In this case, Λ12 and therefore the left-hand side will
be positive and close to zero while the right-hand side is positive and not close to zero in
general.12

C Proofs in Section 3

Let Xe ≡ {x : x = α∗(x̃) for some x̃ ∈ [0, 1]} denote the equilibrium support of
the initial design, which is convex and compact under assumptions of our model by the
theorem of maximum.

Lemma C1. (a) The inverse of a contractor’s equilibrium bidding strategy in (2) is

β∗−1(b, x) = β̃−1(b, x) + δ(x;λ∗) (C.1)

for all x and b on the support of bids in symmetric monotone psPBE. (b) For all x on
the equilibrium support of initial designs, β̃−1(., x) is identified from the distribution of
the auction price (the winning bid) V .

Proof of Lemma C1. By changing variables between contractor costs Ci and quoted
prices in the procurement auctions Pi, we can write the inverse of contractors’ equilibrium
bidding strategy as:

β̃−1(p, x) = p− 1

N − 1

1− FP |X=x(p)

fP |X=x(p)
for all x ∈ Xe, (C.2)

where the right-hand side is identified from the distribution of quoted prices conditional
on the initial design.

12To see this, note that by construction,

Λ1(x, x̃) ≡ ∂

∂x

∫
ω(x)

[π(x∗)− π(x)− a(x, x∗)] dF (x∗|x̃) =

∫
ω(x)

[−π′(x)− a1(x, x∗)] dF (x∗|x̃).
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In fact, β−1(., x) is identified for all x ∈ Xe even if the data only reports the contract
prices determined in the procurement auctions. By definition, the contract price V is
the minimum of prices quoted by participating contractors (Pi : i = 1, 2, ..., N). Because
contractor costs are i.i.d. conditional on X, their bids in a symmetric monotone psPBE
are i.i.d. given X. Thus

1− FV |X =
(
1− FP |X

)N ⇒ FP |X = 1−
(
1− FV |X

) 1
N .

Substituting this into (C.2) and using fV |X=x(b) = ∂
∂t
FV |X=x(t)|t=b, we get

β̃−1(p, x) = p− N

N − 1

1− FV |X=x(p)

fV |X=x(p)
for all x ∈ Xe,

where the right-hand side is identified using the distribution of auction prices conditional
on each x ∈ Xe. �

For each x ∈ X , define ω(x) ≡ {t ∈ X : s(x, t) > 0}. That is, ω(x) is the set of new
designs that could be adopted to replace the initial design x.

Assumption C1. For each x ∈ X , ω(x) is a non-degenerate interval (ωl(x), ωh(x)).
Both ωl and ωh are differentiable in x over X .13

Under this assumption, µ(x, x̃) is continuous in both arguments and is differentiable
in x for each x̃. To see how this condition can be satisfied, suppose for any x, the
net incremental surplus s(x, x∗) is monotone (or concave or convex) in x∗. The implicit
function theorem then implies that this condition holds if s is continuously differentiable
in both of its arguments.

Theorem 1 Under Assumption C1, the marginal effect of contract design on social sur-
plus π′(x) is identified for all x ∈ Xe.

Proof of Theorem 1. Rewrite (7) as:

ϕ′(α∗(x̃); β∗)− π′(α∗(x̃))

= − ∂

∂x
[(1− γ)π(x)p(x, x̃)]x=α∗(x̃) +

∂

∂x

[∫
ω(x)

(1− γ)[π(t)− a(x, t)]dFX∗|x̃(t)

]
x=α∗(x̃)

(C.3)

for any x̃ with an interior solution, where p(x, x̃) ≡ Pr(s(X,X∗) > 0|X = x, X̃ = x̃)
Recall for any x ∈ Xe and t ∈ ω(x), y(x, t) = (1 − γ)a(x, t) + γ[π(t) − π(x)]. Hence the
second term on the right-hand side is

− ∂

∂x
[π(x)p(x, x̃)]x=α∗(x̃) +

∂

∂x

[∫
ω(x)

{π(t)− y(x, t)} dFX∗|x̃(t)
]
x=α∗(x̃)

, (C.4)

13Our main identification result in Theorem 1 holds when ω(x) ⊆ X is non-convex, i.e., partitioned
into disjoint intervals such as (−∞, ω1(x)), (ω2(x), ω3(x)), (ω4(x),+∞).
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and (C.3), under Assumption C1, can be written as

ϕ′(α∗(x̃); β∗)− π′(α∗(x̃))

= −π′(α∗(x̃))p(α∗(x̃), x̃)− π(α∗(x̃))p1(α∗(x̃), x̃) +
∂

∂x

[∫ ωh(x)

ωl(x)

{π(t)− y(x, t)} dFX∗|x̃(t)

]
x=α∗(x̃)

(C.5)

for all x̃, where p1(z, x̃) ≡ ∂
∂x
p(x, x̃)|x=z.

In what follows, let z be shorthand for α∗(x̃) at each x̃. Then by Assumption C1,

p1(z, x̃) = fX∗|x̃(ωh(z))ω′h(z)− fX∗|x̃(ωl(z))ω′l(z).

Applying the Leibniz Rule to the last term on the right-hand side of (C.5), we can write
(C.5) as:

ϕ′(z; β∗) = [1− p(z, x̃)]π′(z) + π(z)[fX∗|x̃(ωl(z))ω′l(z)− fX∗|x̃(ωh(z))ω′h(z)]

+ [π(ωh(z))− y(z, ωh(z))] fX∗|x̃(ωh(z))ω′h(z)− [π(ωl(z))− y(z, ωl(z))] fX∗|x̃(ωl(z))ω′l(z)

−
∫ ωh(z)

ωl(z)

y1(z, t)fX∗|x̃(t)dt (C.6)

for any z ∈ Xe. Next, note that for all (x, x∗),

π(x∗)− y(x, x∗) = π(x∗)− γ[π(x∗)− π(x)]− (1− γ)a(x, x∗)

= π(x) + (1− γ)[π(x∗)− π(x)− a(x, x∗)]

= π(x) + (1− γ)s(x, x∗).

Because s(x, x∗) = 0 at x∗ = ωl(x) or ωh(x), we have π(x∗)− y(z, x∗) = π(z) + (1− γ) · 0
for all z ∈ Xe and x∗ = ωl(z) or ωh(z). Substitute these into (C.6) and cancel out several

terms. Then for all x̃ ∈ X̃ ,

π′(α∗(x̃)) = [1− p(α∗(x̃), x̃)]−1

(
ϕ′(α∗(x̃); β∗) +

∫ ωh(α∗(x̃))

ωl(α∗(x̃))

y1(α∗(x̃), t)fX∗|X̃=x̃(t)dt

)
.

(C.7)
The r.h.s. of (C.7) consists of quantities that are directly identifiable in the data.

First, because the distribution of X̃ is normalized to a standard uniform distribution, the
monotonicity of the buyer strategy implies that α∗(x̃) equals the (100× x̃)-th percentile of

the initial design announced in the data. For any x̃ ∈ X̃ and t ∈ ω(α∗(x̃)) ≡ (ωl(α
∗(x̃)),

ωh(α
∗(x̃))),

fX∗|X̃=x̃(t) = fX∗|X=α∗(x̃)(t)

= fX∗|X∗∈ω(α∗(x̃)),X=α∗(x̃)(t)× Pr(X∗ ∈ ω(α∗(x̃))|X = α∗(x̃))

= fX∗|D=1,X=α∗(x̃)(t)× Pr(D = 1|X = α∗(x̃))

where the first equality is due to monotonicity of α∗ and the second and third equalities
hold because “D = 1 and X = x” if and only if “X∗ ∈ ω(x) and X = x” for all
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x ∈ Xe. Second, note ϕ′(α∗(x̃); β∗) ≡ ∂
∂x
ϕ(x; β∗)|x=α∗(x̃) by definition and is identified for

all x̃ ∈ (0, 1). Third, y1(α∗(x̃), t) ≡ ∂
∂x
y(x, t)|x=α∗(x̃) is identified for all x̃ ∈ (0, 1) and t

such that t ∈ ω(α∗(x̃)). Finally,

p(α∗(x̃), x̃) ≡ Pr{D = 1 | X = α∗(x̃), X̃ = x̃} = Pr{D = 1 | X = α∗(x̃)} ≡ p∗(α∗(x̃)),

where the equality is due to the monotonicity of α∗. This implies the right-hand is
identifiable from the data, because α∗(x̃) equals the 100× x̃-th percentile of X given our
normalization of the marginal distribution of X̃. It then follows that π′(·) is identified
over Xe. Using a location normalization π(x) = π0 where x is the infimum of Xe, we
obtain a solution for π:

π(x) = π0 +

∫ x

x

{
[1− p∗(z)]−1

(
ϕ′(z; β∗) +

∫
ω(z)

y1(z, t)fX∗|X=z(t)dt

)}
dz

for all x ∈ Xe. �

Corollary 1 (Theorem 1) Suppose that Assumption C1, conditions A1 and A2 hold and π
is differentiable. Then (a) a(x, x∗) is identified for all (x, x∗) with x ∈ Xe and s(x, x∗) > 0,
and π(x) is identified for all x ∈ Xs; and (b) the holdup δ(x;λ∗) and the cost distribution
FC|X=x are identified for all x ∈ Xe.

Proof of Corollary 1. Part (a). That γ is identified under conditions (A0) and (A1) is
shown in the text of Section 3. The social surplus π(x) is identified for all x ∈ Xe while
a(x, t) is identified for all x ∈ Xe and t ∈ ω(x) ∩ Xe. Next, consider any x ∈ Xe and
t ∈ ω(x) (but t may not belong to Xe). Let yj denote the partial derivative of y(., .) with
respect to its j-th argument. It follows from (1) that

y1(x, t) = −γπ′(x) + (1− γ)a1(x, t);

y2(x, t) = γπ′(t) + (1− γ)a2(x, t).

Adding the two equations and using the fact that a1(x, t) + a2(x, t) = 0 under (A2), we
get

π′(t) = π′(x) + [y1(x, t) + y2(x, t)]/γ for all t ∈ ω(x)

where the right-hand side is identified. By the smoothness of s in x∗ given any x, the set
Xe∪ω(x) is convex for all x ∈ Xe. Therefore, under the location normalization π(x) = π0,
π(t) is identified for all t ∈ Xe ∪ ω(x). Thus, a(x, t) is identified as

a(x, t) =
y(x, t)− γπ(t) + γπ(x)

1− γ

for such a pair of (x, t) with x ∈ Xe and t ∈ ω(x).
Part (b). By definition, the holdup on the buyer conditional on any x ∈ Xe is

δ(x;λ∗) = γ

∫
ω(x)

[π(t)− π(x)− a(x, t)] dFX∗|X=x(t), (C.8)
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where we have used the fact that FX∗|X̃=α∗−1(x)(.) = FX∗|X=x(.) for all x ∈ Xe. Part (a)
showed that the integrand on the right-hand side of (C.8) is identified for all x ∈ Xe and
t ∈ ω(x). Besides, for any x ∈ Xe, the density fX∗|X=x(t) is identified at any t ∈ ω(x) as

fX∗|X=x(t) = fX∗|D=1,X=x(t)× Pr{D = 1|X = x}.

Thus δ(x;λ∗) is identified for all x ∈ Xe. It then follows from Lemma C1 that the inverse
of bidding strategy β∗(., x), and therefore the cost distribution FC|X=x is identified for all
x ∈ Xe. �

D Buyer surplus in cost-plus and fixed-price con-

tracts

We now explain how to use estimates from Section 6 to calculate the buyer surplus
under cost-plus and fixed-price contracts. Recall the expected surplus for buyers under a
cost-plus contract is

E[π(X∗j , Jobj)|wj]− E(C∗j,i + ζj,i|wj), (D.1)

where i denotes the winner, and wj ≡ (autij, afrij, adisj, nbidj, jobj).
By construction, ex ante costs from contractor i is

E(C∗j,i|z̃j,i) = E(Cj,i|z̃j,i) + E[a(Xj, X
∗
j , z̃j,i)|z̃j,i]. (D.2)

That is, the actual costs for implementing the new design X∗ is decomposed into the
sum of costs based on the initial design Cj,i and the incremental costs a(Xj, X

∗
j , z̃j,i). We

assume X∗j and the initial design in equilibrium Xj = α∗(X̃j) are independent from the
contractor-specific information once conditional on the project-level characteristic jobj in
z̃j,i.

Our first step is to estimate the expected profit margin quoted by the winner in
equilibrium. We begin by estimating the ex ante actual costs by the mean of ĉj,i + âj,i
conditional on z̃j,i, where ĉj,i are estimated costs under the initial design in Section 4 and

âj,i ≡ a(xj, x
∗
j , z̃j,i; θ̂) are estimates for contractor-specific incremental costs in Section 4.

For contracts with no transfers in the data, âj,i = 0 by construction. In what follows, we
discretize the support of z̃j,i into disjoint bins, and estimate ex ante actual costs in (D.2)
by the sample average of ĉj,i + âj,i conditional on discretized values of z̃j,i. Denote the
estimates by υ̂j,i. In each auction j, we find contractors i and i′ who have the two lowest
estimates for ex ante actual costs, and calculate the winner’s quote for profit margin in
equilibrium as υ̂j,i′ − υ̂j,i.

We then estimate the second term in (D.1) by the average of υ̂j,i′ across contracts
conditional on discretized values of wj (because C∗j,i + ζj,i = C∗j,i′ in equilibrium). To

estimate the first term in (D.1), we calculate π̂∗j ≡ π(x∗j , jobj; θ̂) for auctions with transfers;

and π̂∗j ≡ π(xj, jobj; θ̂) otherwise. We then calculate the average of π̂∗j conditional on
(discretized) values of wj. The sum of these two conditional averages are our estimates
for the buyer surplus in (D.1).
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Next, we turn to the estimation of buyer surplus in equilibrium under fixed-price
contracts, which is equal to

E[π(α∗(X̃j), Jobj) + µ(α∗(X̃j), X̃j,Wj)− ϕ(α∗(X̃j),Wj; β
∗)|Wj = wj],

where µ and ϕ are defined in Section 2. The first term E[π(α∗(X̃j), Jobj)|wj] is estimated

by the average of π̂j ≡ π(xj, jobj; θ̂) conditional on (discretized) values of wj. To estimate

E[µ(α∗(X̃j), X̃j,Wj)|wj], we first calculate m̂j ≡ ∆̂j,iq̂j[1 − γ(wj; %̂)]/γ(wj; %̂) for each
contract j, with i being the winning contractor, and then take the average of m̂j,i across
contracts with wj.

14 The last term E[ϕ(α∗(X̃j),Wj; β
∗)|wj] is estimated by a kernel

regression of auction prices given Wj = wj. Alternatively if components in wj are discrete,
we can estimate it by a simple sample average.

14We use ∆̂j,i× q̂j as an estimator for δ(.;λ∗), and use the fact that y−a = γs in the Nash Bargaining
solution.
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E Figures and Tables

Table 1: Summary Statisticsa

Variable Mean Std. Dev. 5-th pctile median 95-th pctile
Contract (Project)-level
number of bidders 4.521 2.267 2 4 9
engineering estimate (million dollars) 2.813 6.681 .227 .947 10.212
actual project size (million dollars) 2.667 5.978 .256 1.044 9.811
job 0.379 .485 0 0 1
winning bid (million dollars) 2.701 6.604 .195 .885 9.423
transfer (million dollars) .258 1.1 0 .039 1.09
winner fringe .484 .5 0 0 1
winner distance (miles) 98.174 145.743 5 46.47 376
winner utilization .125 .217 0 .005 .637
avg. fringeb .564 .293 0 .6 1
avg. utilizationb .121 .127 0 .084 .377
avg. distanceb 108.342 99.301 17.785 82.052 279
Contractor (Bidder)-level
bids (million dollars) 3.055 17.185 .202 .912 10
fringe .620 .485 0 1 1
distance (miles) 103.574 144.633 7.2 55.555 374
utilization .112 .225 0 0 .7
min. dis. among rivals (miles) 43.346 57.868 2.88 25.4 149
min. uti. among rivals .017 .075 0 0 .11

a There are 1306 auctions and 5908 bids in the sample.
b The average is taken for all bidders within an auction.
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Table 2: Regression Results of Transfera

(1) (2) (3)
spec. change (x∗ − x) 0.0681 0.122* -0.0436

(0.0662) (0.0698) (0.0805)
avg. fringe -0.211** -0.206** -0.104

(0.0989) (0.101) (0.102)
number of bidders -0.0135 -0.0158 -0.0150

(0.0130) (0.0130) (0.0129)
job 0.0387 0.0295 0.00889

(0.0549) (0.0550) (0.0547)
spec. change ∗ avg. fringe 0.655*** 0.648*** 0.790***

(0.0959) (0.0960) (0.103)
spec. change ∗ number of bidders -0.143*** -0.144*** -0.144***

(0.0158) (0.0158) (0.0158)
spec. change ∗ job -0.0541 -0.0826* -0.132***

(0.0456) (0.0471) (0.0482)
spec. change ∗ spec. change 0.00236*** 0.00279*** 0.00225***

(0.000646) (0.000671) (0.000682)
avg. utilization -0.238 -0.240

(0.217) (0.215)
spec. change ∗ avg. utilization -0.419** -0.305*

(0.173) (0.174)
avg. distance 0.00103***

(0.000290)
spec. change ∗ avg. distance 0.000456***

(0.000132)
constant 0.355*** 0.389*** 0.219**

(0.0714) (0.0819) (0.0916)
N 1224 1224 1224
R2 0.334 0.338 0.351
adj. R2 0.330 0.332 0.344

a Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
We only use observations of contracts that are modified with negotiated
transfers.
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Table 3: Regression Results of Specification Changea

(1) (2) (3)
number of bidders -0.0479* -0.0485* -0.0485*

(0.0281) (0.0281) (0.0281)
avg. fringe 0.519** 0.503** 0.498**

(0.215) (0.219) (0.223)
job 0.0835 0.0815 0.0818

(0.120) (0.120) (0.120)
avg. utilization -0.186 -0.185

(0.468) (0.469)
avg. distance -0.0000769

(0.000634)
constant -0.264* -0.228 -0.218

(0.155) (0.179) (0.200)
R2 0.006 0.006 0.006
adj. R2 0.003 0.002 0.002
p-value (joint significance) 0.08 0.14 0.22

a Standard errors in parentheses. * p < 0.10, ** p < 0.05,
*** p < 0.01. The regression uses the observations with
contract revisions and observed transfers.

Figure 1: Scatter Plots of Transfer Versus Specification Difference
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Note: Both transfer and specification change x∗ − x are in million dollars. The left
and right subplots are corresponding to positive and negative x∗ − x, respectively.
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Table 4: Regression results of expected paymenta

(1) (2) (3)
engineering estimate 1.105∗∗∗ 1.080∗∗∗ 1.029∗∗∗

(0.0160) (0.0165) (0.0170)
engineering estimate ∗ engineering estimate 0.0000175 0.000107 -0.000228∗

(0.000133) (0.000133) (0.000135)
avg. fringe -0.0465 -0.0574 -0.108

(0.117) (0.118) (0.115)
number of bidders 0.0151 0.0126 0.0121

(0.0146) (0.0145) (0.0140)
job -0.137∗∗ -0.145∗∗ -0.121∗∗

(0.0620) (0.0614) (0.0596)
engineering estimate ∗ avg. fringe 0.128∗∗∗ 0.120∗∗∗ 0.150∗∗∗

(0.0198) (0.0197) (0.0194)
engineering estimate ∗ number of bidders -0.0490∗∗∗ -0.0484∗∗∗ -0.0487∗∗∗

(0.00314) (0.00312) (0.00302)
engineering estimate ∗ job 0.0622∗∗∗ 0.0648∗∗∗ 0.0539∗∗∗

(0.00842) (0.00835) (0.00818)
avg. utilization -0.631∗∗ -0.613∗∗

(0.246) (0.239)
engineering estimate ∗ avg. utilization 0.150∗∗∗ 0.142∗∗∗

(0.0283) (0.0274)
avg. distance -0.0000780

(0.000302)
engineering estimate ∗ avg. distance 0.000299∗∗∗

(0.0000347)
constant -0.0460 0.0583 0.104

(0.0872) (0.0972) (0.104)
N 1306 1306 1306
R2 0.977 0.978 0.979
adj. R2 0.977 0.978 0.979

a The units of payment and engineering estimate are million dollars. Standard
errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 5: Estimates of Average Marginal Effects on Bargaining Powera

(1) (2) (3)

avg. bargaining power
job=1 0.911∗∗∗ 0.887∗∗∗ 0.689∗∗

(0.185) (0.192) (0.323)
job= 0 0.903∗∗∗ 0.953∗∗∗ 0.793∗∗

(0.214) (0.254) (0.323)

avg. marginal effects

number of bidders 0.060∗∗ 0.074 0.051
(0.032) (0.047) (0.071)

avg. fringe -0.077 -0.086 -0.281
(0.178) (0.238) (0.471)

avg. utilization -0.178 0.440∗∗

(0.214) (0.189)
avg. distance 0.001

(0.002)

a Standard errors in parentheses are calculated using 200 bootstrap
samples: * p < 0.10, ** p < 0.05, *** p < 0.01. Specifications (1), (2),
and (3) are for w ≡ [job, nbid, afri], w ≡ [job, nbid, afri, auti] and
w ≡ [job, nbid, afri, auti, adis], respectively.

Table 6: Estimates of Surplus and Cost Functionsa

(1) (2) (3)

Surplus function π(·)
X -0.239∗∗ -0.233∗∗ -0.262∗∗∗

(0.083) (0.082) (0.083)
X ∗ job -0.118 -0.134 -0.115

(0.088) (0.085) (0.114)
X2 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.002) (0.002) (0.002)

Cost function a(·)
(X∗ −X) 0.031 0.037 0.008

(0.048) (0.051) (0.061)
(X∗ −X) ∗ job -0.104 -0.120∗ -0.101

(0.065) (0.071) (0.083)
(X∗ −X) ∗ (X∗ −X) -0.010∗∗ -0.010∗∗ -0.010∗∗

(0.005) (0.005) (0.004)
constant 1.566∗∗∗ 1.566∗∗∗ 1.566∗∗∗

(0.057) (0.057) (0.057)

a Standard errors in parentheses are calculated using 200 bootstrap sam-
ples: * p < 0.10, ** p < 0.05, *** p < 0.01. Columns (1), (2), and (3)
report estimates based on the first-stage estimates from specifications
(1), (2), and (3) in Table 4, respectively.
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Table 7: Logit Regression of Probability of Incompletenessa

(1) (2) (3)
constant 0.997∗∗∗ 1.179∗∗∗ 1.161∗∗∗

(0.249) (0.273) (0.275)
engineering estimate 2.149∗∗∗ 1.798∗∗∗ 1.846∗∗∗

(0.381) (0.410) (0.417)
job 0.226 -0.403 -0.391

(0.256) (0.512) (0.512)
engineering estimate ∗ job 1.309 1.287

(0.968) (0.967)
engineering estimate ∗ engineering estimate -0.0198∗∗∗ -0.0202∗∗∗

(0.00529) (0.00675)
observations 1306 1306 1306
log-likelihood -246.72 -245.81 -245.70
pseudo R2 0.157 0.160 0.161

a Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 8: Estimates of Markup Ratio (unit: %)a

10-th pctile 25-th pctile median 75-th pctile 90-th pctile

job
1 .017 .031 .058 .131 .236
0 .020 .036 .065 .129 .244

winners Yes .038 .063 .122 .221 .397
No .017 .028 .054 .105 .190

fringe Yes .017 .028 .054 .112 .210
No .024 .045 .078 .154 .291

utilizationb 0 .017 .028 .054 .109 .205
(0, 0.3) .025 .047 .082 .161 .289
[0.3, 1] .021 .040 .067 .147 .292

distanceb [0.1, 11.9] .022 .037 .065 .142 .278
[12, 247.9] .018 .033 .062 .128 .233
> 247.9 .020 .036 .063 .132 .284

number of biddersc

2 .153 .181 .232 .343 .523
3 ≤ n ≤ 5 .038 .051 .078 .137 .251
6 ≤ n ≤ 8 .017 .022 .035 .073 .152
8 < n .010 .014 .019 .039 .081

overall .019 .034 .062 .129 .241

a The markup ratio is defined as a contractor’s markup over her initial cost ĉj,i.
b The intervals of distance are defined by their lower, middle and upper terciles. For all the
positive utilization rates, we divide them into (0, 0.3) and [0.3, 1] such that the observations in the
two intervals equal.
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Table 9: Estimates of Markup Ratios Assuming away Incompleteness (unit: %)a

10-th pctile 25-th pctile median 75-th pctile 90-th pctile

job
1 .022 .038 .071 .162 .301
0 .024 .045 .077 .161 .306

winning bidders
Yes .050 .082 .149 .277 .512
No .022 .036 .064 .129 .240

fringe
Yes .022 .036 .066 .137 .271
No .029 .054 .092 .189 .359

utilizationb
0 .020 .036 .065 .134 .262
(0, 0.3) .032 .058 .098 .194 .365
[0.3, 1] .026 .042 .083 .175 .363

distanceb
[0.1, 11.9] .025 .046 .074 .168 .334
[12, 247.9] .023 .042 .076 .161 .299
> 247.9 .024 .042 .073 .156 .326

number of biddersc

2 .188 .199 .269 .406 .670
3 ≤ n ≤ 5 .047 .061 .094 .170 .311
6 ≤ n ≤ 8 .022 .027 .045 .095 .211
8 < n .014 .017 .027 .058 .106

overall .023 .043 .075 .161 .305

a The markup ratio assuming away incompleteness is defined as a contractor’s markup over her initial
cost ĉj,i.
b The intervals of distance are defined by their lower, middle and upper terciles. For all the positive
utilization rates, we divide them into (0, 0.3) and [0.3, 1] such that the intervals have equal number of
observations.

48



T
ab

le
10

:
E

st
im

at
es

of
A

ve
ra

ge
M

ar
gi

n
al

E
ff

ec
ts

on
th

e
H

ol
d
u
p

R
at

io
a

n
=

2
3
≤
n
≤

5
6
≤
n
≤

8
n
>

8
V

ar
ia

b
le

(1
)

(2
)

(3
)

(1
)

(2
)

(3
)

(1
)

(2
)

(3
)

(1
)

(2
)

(3
)

av
g.

fr
in

ge
0.

06
2*

**
0.

05
3*

**
.0

57
**

*
0.

14
4*

**
0.

13
5*

**
0.

13
4*

**
0.

13
5*

**
0.

12
9*

**
0.

08
21

**
*

0.
35

9*
**

0.
41

7*
**

0.
38

3*
**

(0
.0

00
1)

(0
.0

11
)

(0
.0

00
7)

(0
.0

01
)

(0
.0

01
)

(0
.0

01
)

(0
.0

01
)

(0
.0

00
7)

(0
.0

00
6)

(0
.0

09
)

(0
.0

00
7)

(0
.0

14
)

jo
b

-0
.0

10
**

*
-0

.0
11

**
*

-0
.0

10
**

*
0.

03
3*

**
0.

03
1*

**
0.

03
3*

**
0.

03
2*

**
0.

03
1*

**
0.

03
3*

**
-0

.0
10

**
*

-0
.0

15
0.

01
1

(0
.0

00
1)

(0
.0

00
4)

(0
.0

02
)

(0
.0

06
)

(0
.0

05
)

(0
.0

06
)

(0
.0

00
4)

(0
.0

01
)

(0
.0

00
6)

(0
.0

00
3)

(0
.0

11
)

(0
.0

13
)

av
g.

u
ti

li
za

ti
on

-0
.1

26
**

*
-0

.1
24

**
*

-0
.0

95
**

*
-0

.0
97

**
*

-0
.0

45
**

*
-0

.0
20

**
*

-0
.2

51
**

*
-0

.1
83

**
*

(0
.0

00
8)

(0
.0

01
)

(0
.0

01
)

(0
.0

01
)

(0
.0

05
)

(0
.0

02
)

(0
.0

65
)

(0
.0

74
)

av
g.

d
is

ta
n
ce

-1
.1

3e
-4

**
*

-0
.0

45
**

*
-3

.3
9e

-4
**

*
4.

39
e-

4
(1

.1
0e

-5
)

(0
.0

05
)

(2
.3

7e
-6

)
(7

.0
0e

-6
)

a
T

h
e

h
ol

d
u
p

ra
ti

o
is

d
efi

n
ed

as
th

e
ra

ti
o

of
h
ol

d
u
p

ov
er

th
e

en
gi

n
ee

ri
n
g

es
ti

m
at

e
in

ea
ch

co
n
tr

ac
t.

S
ta

n
d
ar

d
er

ro
rs

in
p
ar

en
th

es
es

,
*
p
<

0.
10

,
**

p
<

0.
05

,
**

*
p
<

0.
01

.
S
p

ec
ifi

ca
ti

on
(1

):
ra

ti
o=
β

0
+
β

1
av

g.
fr

in
ge

+
β

2
jo

b
+
β

3
av

g.
fr

in
ge
×

jo
b

+
ε.

S
p

ec
ifi

ca
ti

on
(2

):
ra

ti
o=
β

0
+
β

1
av

g.
fr

in
ge

+
β

2
av

g.
u
ti

li
za

ti
on

+
β

3
jo

b
+
β

4
av

g.
fr

in
ge
×

jo
b

+
β

5
av

g.
u
ti

li
za

ti
on
×

jo
b
+
ε.

S
p

ec
ifi

ca
ti

on
(3

):
ra

ti
o=
β

0
+
β

1
av

g.
fr

in
ge

+
β

2
av

g.
u
ti

li
za

ti
on

+
β

3
av

g.
d
is

ta
n
ce

+
β

4
jo

b
+
β

5
av

g.
fr

in
ge
×

jo
b

+
β

6
av

g.
u
ti

li
za

ti
on
×

jo
b
+
β

7
av

g.
d
is

ta
n
ce
×

jo
b
+
ε.

49



T
ab

le
11

:
E

st
im

at
es

of
A

ve
ra

ge
M

ar
gi

n
al

E
ff

ec
ts

on
S
u
rp

lu
s

D
iff

er
en

ce
(C

os
t-

p
lu

s
M

in
u
s

F
ix

ed
-p

ri
ce

,
in

M
il
li
on

D
ol

la
rs

)a

n
=

2
3
≤
n
≤

5
6
≤
n
≤

8
n
>

8
V

ar
ia

b
le

(1
)

(2
)

(3
)

(1
)

(2
)

(3
)

(1
)

(2
)

(3
)

(1
)

(2
)

(3
)

en
gi

n
ee

ri
n
g

es
ti

m
at

e
1.

02
9*

**
1.

02
8*

**
1.

03
6*

**
0.

98
0*

**
0.

97
9*

**
0.

97
6*

**
0.

87
8*

**
0.

87
6*

**
0.

86
8*

**
0.

74
5*

**
0.

74
1*

**
0.

74
5*

**
(0

.0
07

)
(0

.0
07

)
(0

.0
06

)
(0

.0
02

)
(0

.0
02

)
(0

.0
02

)
(0

.0
02

)
(0

.0
02

)
(0

.0
02

)
(0

.0
17

)
(0

.0
19

)
(0

.0
15

)
av

g.
fr

in
ge

0.
91

9*
**

0.
94

3*
**

0.
87

1*
**

0.
45

4*
**

0.
53

3*
**

0.
54

9*
**

0.
39

7*
**

0.
48

4*
**

0.
05

0*
**

0.
45

1
0.

07
2

0.
02

8
(0

.5
18

)
(0

.0
62

)
(0

.0
46

)
(0

.0
13

)
(0

.0
14

)
(0

.0
15

)
(0

.0
15

)
(0

.0
17

)
(0

.0
03

)
(0

.1
46

)
(0

.1
02

)
(0

.0
93

)
jo

b
-0

.0
61

**
*

-0
.0

59
**

*
-0

.0
79

**
*

-0
.2

34
**

*
-0

.2
28

**
*

-0
.2

37
**

*
-0

.2
40

**
*

-0
.2

47
**

*
-0

.2
34

**
*

-0
.3

33
**

*
-0

.4
07

**
*

-0
.3

76
**

*
(0

.0
17

)
(0

.0
16

)
(0

.0
13

)
(0

.0
11

)
(0

.0
11

)
(0

.0
09

)
(0

.0
08

)
(0

.0
10

)
(0

.0
09

)
(0

.0
38

)
(0

.0
04

)
(0

.0
30

)
av

g.
u
ti

li
za

ti
on

0.
14

7*
**

0.
10

2*
*

0.
72

0*
**

0.
72

7*
**

0.
12

4*
**

0.
13

7*
**

1.
77

6
2.

00
1*

**
(0

.0
49

)
(0

.0
43

)
(0

.0
11

)
(0

.0
09

)
(0

.0
30

)
(0

.0
01

)
(0

.1
57

)
(0

.0
78

)
av

g.
d
is

ta
n
ce

2.
78

e-
4*

**
5.

01
e-

4*
**

-4
.0

0e
-4

**
*

-3
.3

6e
-4

**
*

(6
.7

5e
-5

)
(3

.9
86

e-
5)

(9
.0

6e
-5

)
(6

.7
6e

-5
)

a
S
ta

n
d
ar

d
er

ro
rs

in
p
ar

en
th

es
es

,
*
p

<
0.

10
,

**
p

<
0.

05
,

**
*
p

<
0.

01
.

S
p

ec
ifi

ca
ti

on
(1

):
d
iff

=
β

0
+
β

1
en

gi
n
ee

ri
n
g

es
ti

m
at

e+
β

2
av

g.
fr

in
ge

+
β

3
jo

b
+
β

4
av

g.
fr

in
ge
×

en
gi

n
ee

ri
n
g

es
ti

m
at

e+
β

5
jo

b
×

en
gi

n
ee

ri
n
g

es
ti

m
at

e+
β

6
en

gi
n
ee

ri
n
g

es
ti

m
at

e×
en

gi
n
ee

ri
n
g

es
ti

m
at

e+
ε.

S
p

ec
ifi

ca
ti

on
(2

):
d
iff

=
β

0
+
β

1
en

gi
n
ee

ri
n
g

es
ti

m
at

e+
β

2
av

g.
fr

in
ge

+
β

3
av

g.
u
ti

li
za

ti
on

+
β

4
jo

b
+
β

5
av

g.
fr

in
ge
×

en
gi

n
ee

ri
n
g

es
ti

m
at

e+
β

6
av

g.
u
ti

li
za

ti
on
×

en
gi

n
ee

ri
n
g

es
ti

m
at

e+
β

7
jo

b
×

en
gi

n
ee

ri
n
g

es
ti

m
at

e+
β

8
en

gi
n
ee

ri
n
g

es
ti

m
at

e×
en

gi
n
ee

ri
n
g

es
ti

m
at

e+
ε.

S
p

ec
ifi

ca
ti

on
(3

):
d
iff

=
β

0
+
β

1
en

gi
n
ee

ri
n
g

es
ti

m
at

e+
β

2
av

g.
fr

in
ge

+
β

3
av

g.
u
ti

li
za

ti
on

+
β

4
av

g.
d
is

ta
n
ce

+
β

5
jo

b
+
β

6
av

g.
fr

in
ge
×

en
g.

+
β

7
av

g.
u
ti

li
za

ti
on
×

en
gi

n
ee

ri
n
g

es
ti

m
at

e+
β

8
av

g.
d
is

ta
n
ce
×

en
gi

n
ee

ri
n
g

es
ti

m
at

e+
β

9
jo

b
×

en
gi

n
ee

ri
n
g

es
ti

m
at

e+
β

1
0
en

gi
n
ee

ri
n
g

es
ti

m
at

e×
en

gi
n
ee

ri
n
g

es
ti

m
at

e+
ε.

50



Figure 2: Dependence of Transfer on Specification Change and Contract Characteristics
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Note: In each subplot, the curve depicts the predicted transfers from a linear regression on
(x∗−x) and (x∗−x)2. Subplots with avg.uti : low,medium, and high are for subsets of data in
which (x∗ − x) fall in the first, second and third intervals defined by terciles of (x∗ − x). Similar
definition applies for subplots for avg.fringe.
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Figure 3: Histogram of the Holdup Ratio
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(b) the ratio: by number of bidders

Note: The holdup ratio is defined as the ratio of holdup over the engineering estimate in each
contract.

Figure 4: Histogram of the Surplus Difference
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(a) the surplus difference: by job type
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(b) the surplus difference: by number of bidders

Note: The surplus difference is defined as the surplus under cost-plus contract subtracts that of
the fixed-price contract.
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