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Abstract

We identify and estimate peer and contextual effects in social interactions models
with endogenous covariates (e.g., self-selected treatments). Our method uses
individual instruments for endogenous covariates, but does not require additional
instruments for simultaneity in outcomes, which are often hard to find in models
with contextual effects. The method can be applied to relax the Stable Unit
Treatment Value Assumption (SUTVA) in program evaluation, allowing individual
treatments to influence the outcomes of others through peer and contextual effects.
We apply our method to estimate peer effects in Grade 3 math scores of elementary
school students in the State of Tennessee. Using lagged class sizes and teacher
qualification as instruments for Grade 2 scores, we find significant evidence for
positive peer effects and path dependence on G2 scores.
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1 Introduction

Social interactions models have been used in a wide variety of environments for

studying how members within a group influence each other’s outcomes. Examples

include Gaviria and Raphael (2001) on juvenile behavior; Hoxby (2000), Sacerdote

(2001), Zimmerman (2003), Angrist and Lang (2004), Calvó-Armengol, Patacchini, and

Zenou (2009), Carrell, Fullerton, and West (2009), Lavy, Paserman, and Schlosser (2012),

Burke and Sass (2013) and Ross and Shi (2021) on students’ academic achievements;

Katz, Kling, and Liebman (2001), Sampson, Morenoff, and Gannon-Rowley (2002),

Durlauf (2004), Kling, Liebman, and Katz (2007), and Chetty, Hendren, and Katz

(2016) on neighborhood effects; Trogdon, Nonnemaker, and Pais (2008) on adolescent

overweight; Bayer, Hjalmarsson, and Pozen (2009) on juvenile corrections; Bramoullé,

Djebbari, and Fortin (2009) on recreational activities; Bollinger and Gillingham (2012)

on diffusion of products; Waldinger (2012), Cornelissen, Dustmann, and Schönberg

(2017) on productivity; Ahern, Duchin, and Shumway (2014) on risk aversion and

trust; Bursztyn, Ederer, Ferman, and Yuchtman (2014) on financial decisions; Dahl,

Løken, and Mogstad (2014) on paternity leave program participation, etc.

A popular specification for social interactions models takes a linear-in-means (LIM)

form, in which each individual outcome is linear in the average group outcome, the

individual’s own characteristics, and possibly the average characteristics of group

members. Manski (1993) specified such a LIM social interactions model, and used

the term contextual effects to capture how an individual’s characteristics directly

impact other members’ outcomes, and endogenous peer effects to reflect a structural

simultaneity between member outcomes within a group. He showed that, without

further restrictions such as homoskedastic errors or additional sources of exogenous

variation, the peer and contextual effects can not be disentangled from the model’s
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reduced form. This non-identification issue is commonly known as the “reflection

problem”. Manski (1993) proposed a solution to the reflection problem (in Proposition

2), which identified the peer effects using an exclusion restriction that some individual

characteristics have a direct effect on an individual’s own outcome but no contextual

effect on others’ outcomes. Such exclusion restrictions arise in some empirical contexts,

but are not easy to motivate in others.

In this paper we propose a solution to the reflection problem that exploits

individual-level instruments for endogenous covariates. Our method is related to

the insight from Manski (1993) in the following sense. We use instruments to construct

individual-specific control functions (CFs) to deal with endogeneity in the covariates in

the structural form. Our main idea is that these control functions essentially function

as generated regressors which satisfy the exclusion restriction in Manski (1993). Thus,

we do not need to invoke further assumptions for identifying peer effects. Most

importantly, our method does not require additional instruments for dealing with the

simultaneity in individual outcomes.

Empirical studies either focused on settings where the contextual effects are absent,

or chose to infer some form of a composite effect that combines peer and contextual

effects. (See our discussion of the literature in Section 5.) At the same time, the

econometrics literature have provided solutions for the reflection problem in many

ways. Moffitt (2001) used an alternative exclusion restriction (that a randomly assigned

policy variable affects some but not all individuals in a group) to identify a LIM

social interactions model. Brock and Durlauf (2001a) and Blume, Brock, Durlauf, and

Ioannides (2011) showed that a necessary condition for resolving this identification

problem, in the absence of further assumptions or sources of exogenous variation, is to

require at least one characteristic whose group-level average has no contextual effect.1

1Graham and Hahn (2005) made a similar observation in a different information setting where
the actual group-level average of characteristics is replaced by its expectation conditional on common
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Blume, Brock, Durlauf, and Ioannides (2011) pointed out that finding valid instrument

for the simultaneity in the structural form is difficult, and “most likely requires the

development of an auxiliary model of xi (individual characteristics)”.

Several papers used the second moments of observed individual outcomes to

identify the peer effects. Graham (2008) exploited second-moment restrictions on

unobserved errors to identify a social multiplier, which is a composite of peer and

contextual effects. (In the presence of contextual effects, these social multipliers

are reduced to peer effects.) Sacerdote (2001) identified endogenous peer effects,

using the second moments of individual outcomes, as well as the homoskedasticity

and uncorrelation of structural errors, which are assumed to be independent from

explanatory variables. Liu (2017) proposed a root-estimator to estimate peer and

contextual effects in a linear-in-means social interactions model without group size

variation, exploiting the variance of heteroskedastic, uncorrelated structural errors that

are independent from the regressors. In the context of social networks, Rose (2017)

identified peer effects through the covariance of outcomes, assuming the structural

errors are homoskedastic, uncorrelated, and independent from the regressors. Lee

(2007a) identifies peer and contextual effects by exploiting exclusion restrictions (some

covariates have no contextual effects) as well as group size variation. For models

with general network structures, Bramoullé, Djebbari, and Fortin (2009), De Giorgi,

Pellizzari, and Redaelli (2010), Lee, Liu, and Lin (2010), Lin (2010), Liu and Lee (2010)

identified peer and contextual effects, using features derived from network structures

as instruments. Such instruments are not available in the linear-in-means specification

we consider.2

The method we propose in this paper is related to these papers above in the sense

information.
2Formally, this is because in a LIM social interactions model, the matrix [X,GX,G2X] (with X being

individual covariates and G being a network that assigns equal weights to all peers) does not satisfy the
rank condition for identification.
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that we also exploit restrictions on the covariance of structural errors. In our case,

the restrictions are invoked on the errors in the outcome equation and the auxiliary

equation that models endogeneity. Our method does not use the second moment

of observed outcomes, and is designed to solve the identification question in the

presence of endogenous regressors. We do so by leveraging the identifying power

from additional instruments on the individual level.

Several papers have studied social interactions models with selection bias, using

exogenous instruments for identification. Brock and Durlauf (2001b) (Section 3.6)

showed how to identify peer and contextual effects when each member’s decision to

join a group is determined in a Probit selection stage. They used instruments from the

selection stage, and corrected the selection bias as in Heckman (1979). Ioannides and

Zabel (2008), Hoshino (2019) also dealt with the sample selection issue in LIM social

interactions models in the contexts of neighborhood housing demands and student

friendships, respectively. Sheng and Sun (2021) estimated a social interactions model

where endogenous group formation arises from a many-to-one matching model.

We contribute to the literature by resolving the reflection problem in a model

where some individual characteristics (such as self-selected treatment) are endogenous.

Unobserved individual characteristics are correlated with such endogenous covariates,

and affect the peer outcomes of other group members in the reduced form. While we

do not deal with sample selection issues, the method we use is related to the papers

mentioned above in that we also require exogenous instrument variables (IVs) to

deal with a different form of endogeneity bias that arises in individual covariates.

Endogenous covariates are ubiquitous in empirical analyses in social sciences.

An important trait of our method is that it only requires one set of instruments

for individual covariates with endogeneity, but does not need additional IVs for the

simultaneity in outcomes, which are often hard to find in practice for linear-in-means
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models with contextual effects. Nor does it need exclusion restrictions that some

observed covariates in the structural form have no contextual effects. This is perhaps

a surprising feature, because it appears to counter the classical order conditions for

identifying models with simultaneity. Nevertheless, the intuition of our method is

that with social interactions, the control functions (CFs) constructed using individual-

specific instruments have distinctive impacts on the reduced form of an individual’s

own outcome as well as those of the others. Such distinction between the marginal

effects on one’s own outcome and the effects on others’ outcomes enables us to

disentangle the peer effects from the contextual effects.

Our work also contributes to the treatment effects literature, by relaxing the Stable

Unit Treatment Value Assumption (SUTVA). That is, self-selected treatments are

allowed to influence the outcome of other group members, both through contextual

and endogenous effects.

We propose a two-step estimator, which implements classical control function

methods or Heckit correction for endogeneity bias in the context of social interactions.

It consistently estimates peer and contextual effects in a model where endogenous

covariates have both direct and contextual effects. We apply our method to estimate

social effects in students’ academic achievements in a sample from elementary schools

in Tennessee (STAR). Our model allows students’ current (Grade 3) achievements to

have path dependence on the previous (Grade 2) achievements, which are possibly

endogenous due to unobserved individual/family endowment or measurement errors.

Using lagged class sizes, teacher qualifications and students’ self-reported motivation

scores as instruments, we find significant evidence for positive peer effects and path

dependence on Grade 2 math scores.

Throughout this paper, we focus primarily on a linear-in-means social interactions

model with a parametric distribution of errors, even though the main insight can be
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generalized to nonlinear models with nonparametric error distributions.3 We choose to

do so because of two reasons. First, even within the simple setting of linear parametric

models, this insight – individual instruments for endogenous covariates can be used

to solve the reflection problem, with no need for exclusion restrictions or additional

IVs for simultaneity - - has not been appreciated and applied in the existing literature.

Second, the LIM social interactions model is popular among empiricists, yet to the best

of our knowledge no earlier works have dealt with the reflection problem in combination

with endogenous covariates. Therefore, our goal is to propose a tractable method that

addresses these two challenges together in a linear framework that is popular among

practitioners.

The paper unfolds as follows. We introduce the linear-in-means model with

endogeneity and discuss its identification in the next section. We propose a two-

step estimator in Section 3, and study some extensions in Section 4. We illustrate our

method by an empirical application of peer effects in classrooms in Section 5 and monte

carlo experiments in Appendix A. Section 6 concludes.

2 The Model and Identification

We consider a data-generating process (DGP) that generates a large number of

independent groups with fixed sizes. To simplify our exposition of the main idea,

suppose each group has n members in this section, so that we can suppress the group

index g in notation (e.g., individual outcomes Yg,i and their group means Yg).4 Later in

Section 3, which introduces a two-step estimator, we generalize by allowing the group

sizes ng to vary across g.

3We discuss in Section 2.2 how to extend the core idea when the auxiliary equation modeling
endogenous variables is non-linear with a nonparametric distribution of errors.

4Lee (2007a) identifies peer and contextual effects using variation in group sizes. Our method
allows variable as well as fixed group sizes (see Section 3). In this section, we focus on introducing
another identification strategy for the reflection problem through a control function approach. Hence,
we present on a setting with fixed group sizes only to simplify exposition of the main idea.
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The structural form of individual outcomes is:

Yi = αY + β0 + X′iβX + X
′

γX + DiβD + DγD + Ui, for i = 1, · · · ,n, (1)

where α , 1, β0 is a structural intercept, Yi and Xi are the outcome and exogenous

characteristics of individual i respectively, and Ui is a scalar unobserved error term.

The endogenous covariate Di can be either discrete or continuous. Let Y,X,D,U be

the average of Yi,Xi,Di,Ui among n members in the same group. We refer to α as the

endogenous peer effect, γX, γD as contextual effects, and βX, βD as direct, individual

effects. Note the model uses the overall mean of peer outcomes and characteristics

on the right-hand side, as opposed to a "leave-one-out" average of other peers. This

specification is used in a variety of empirical contexts. See, for example, Trogdon et al.

(2008) and Mora and Gil (2013).

To fix ideas, let Di be a scalar variable. (Generalization to the case with a multivariate

Di is conceptually straightforward but is algebraically more involved.) By construction,

the group means are

Y =
β0

1 − α
+ X

′βX + γX

1 − α
+ D

βD + γD

1 − α
+

U
1 − α

.

Substituting this in (1) gives the following reduced form:

Yi = β̃0 + X′iβX + X
′

γ̃X + DiβD + Dγ̃D + Ũi, (2)

where β̃0 ≡
β0

1−α , γ̃X ≡
αβX+γX

1−α , γ̃D ≡
αβD+γD

1−α , and Ũi ≡ Ui + αU
1−α . In this reduced form,

each individual’s outcome Yi also depends on other members’ unobserved errors U j

through the composite error Ũi.

We will use control function methods to deal with endogeneity in discrete or

continuous Di, and to resolve the reflection problem and identify all social effects.

The control function method has been applied widely in theory and practice due to

its simplicity and flexibility. Since its introduction by Heckman and Robb (1985),
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the control function approach has been used in a variety of settings. See, for example,

Newey, Powell, and Vella (1999), Vella and Verbeek (1999), Chesher (2003), Das, Newey,

and Vella (2003), Lee (2007b), Florens, Heckman, Meghir, and Vytlacil (2008), Carrell,

Fullerton, and West (2009), Imbens and Newey (2009), Klein and Vella (2010), Petrin

and Train (2010), Hahn and Ridder (2011), Kasy (2011), and Blundell and Matzkin

(2014) among others.

2.1 Binary Endogenous Variable: A Baseline Case

Let Di be binary and endogenous. For example, Di can be a treatment for individual

i. In this case, the model in (1) relaxes the SUTVA condition in treatment effects,

because the outcome for a member i depends on the treatment of other individuals

j , i both directly through the contextual effect γD and indirectly through the peer

effect α. Assume that for each i ≤ n,

Di = 1
{
Z′iδ + Vi ≥ 0

}
. (3)

We assume Zi contains distinct elements not included in Xi. This assumption subsumes

the case where Xi is a strict sub-vector of Zi; it is necessary for rank conditions that

identify the model. In Section 2.2, we show how to generalize (3) by allowing Di to

depend on other individual covariates Z j for j , i as well.

Let D ≡ (Di)i≤n; and likewise for Z,V,X,U. Write (2) as

Yi = β̃0 + X′iβX + X
′

γ̃X + DiβD + Dγ̃D + E
(
Ũi|X,D,Z

)
+ ηi

where E(ηi|X,D,Z) = 0 by construction. Assume that (Ui,Vi) are identically and

independently distributed across i ≤ n, independent from (X,Z), and bivariate normal Ui

Vi

 ∼ N


 0

0

 ,
 σ2 σuv

1


 ,
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where σuv , 0. Then

E
(
Ũi|X,D,Z

)
= E (Ui|X,D,Z) +

α
1 − α

E
(
U|X,D,Z

)
= E (Ui|Zi,Di) +

α
1 − α

1
n

∑
j≤n

E
(
U j

∣∣∣ Z j,D j

)
= σuvRi +

α
1 − α

σuvR,

where R ≡ 1
n

∑
i≤n Ri and

Ri ≡ Di
φ(Z′iδ)
Φ(Z′iδ)

− (1 −Di)
φ(Z′iδ)

1 −Φ(Z′iδ)
,

where φ and Φ denote the standard normal PDF and CDF respectively.

The second equality is due to independence of (Ui,Vi) across i ≤ n and their joint

independence from (X,Z); the third equality uses the bivariate normality of (Ui,Vi).

Note Ri is a typical correction term for the endogenous Di, or a control function, when

the latent errors in the structural and treatment equations are bivariate normal. (See

Heckman, 1978, Gourieroux, Monfort, Renault, and Trognon, 1987, Vella, 1993, 1998).

Denote σ̃uv ≡
α

1−ασuv. Thus

E(Yi|X,D,Z) = β̃0 + X′iβX + X
′

γ̃X + DiβD + Dγ̃D + σuvRi + σ̃uvR. (4)

With Zi assumed independent from Vi and the standard deviation of Vi normalized

to 1, we can identify and consistently estimate δ from (3) using a Probit step. Thus Ri

can be treated as known in subsequent steps for identification. Assume the support of

(1,Xi,X,Di,D,Ri,R) is not contained in a linear subspace for each i ≤ n. This condition

holds generically because Zi has distinct elements excluded from Xi and because Ri is

nonlinear in Zi. Then regressing Yi on (1,Xi,X,Di,D,Ri,R) in (4) identifies the reduced-

form coefficients

β̃0, βX, γ̃X, βD, γ̃D, σuv, σ̃uv.
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It then follows that α, β0, γX, γD are also identified:

α =
σ̃uv

σuv + σ̃uv
, β0 = (1 − α)β̃0, γX = (1 − α)γ̃X − αβX, γD = (1 − α)γ̃D − αβD. (5)

In this case, the reflection problem is solved thanks to the additional source of variation

provided by the terms that correct endogeneity, i.e., Ri, i = 1, ...,n.

There is another intuitive interpretation of our method. We have used instruments

Zi to construct individual-level control functions (CFs) Ri. Thus we can substitute

Ui = σuvRi + ζi in the structural form of (1), where ζi ≡ [Ui − E(Ui|X,D,Z)]. Then

these CFs as generated regressors, which satisfy the exclusion restriction in Manski

(1993). Moreover, in the reduced form for each i in (4), the instruments for the other

individuals, Z j for j , i, contribute to a second CF, i.e., R, that is associated with the

endogenous peer average D. Thanks to these two contributions by individual and peer

instruments respectively, we are able to solve the reflection problem without further

assumptions.

Some remarks about the assumption that “(Ui,Vi) are independent across i ≤ n”

are in order. This condition is stronger than necessary for identification; yet it is

essential for tractable estimation in the linear parametric framework we consider.

Without such independence, an individual control function E(Ui|D,Z) (where D,Z

consists of D j,Z j for all j in the group) would be a nonlinear function of multiple indices

(Z′jδ) j≤n, even when (U,V) follows a multivariate normal distribution. Such a control

function involves a (n + 1)-dimensional integral over the support of (Ui,V), and needs

to be approximated through numerical integration in estimation. Nevertheless, our

identification strategy remains valid, provided there is enough joint variation in (Ri,R)

so that the support of (1,Xi,X,Di,D,Ri,R) is not contained in a linear subspace.5 We

acknowledge that the independence of (Ui,Vi) across i ≤ n may be restrictive in that

5In contrast, when (Ui,Vi) are bivariate normal and independent across i ≤ n, the individual CF
E(Ui|D,Z) takes a simple form of Ri, which only involves a single index Ziδ in (inverse) mills ratios.
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it rules out correlated effects within each group. Later in Section 4.3, we show how

to relax this independence assumption and allow for correlated effects in a “leave-

one-out” social interactions model where individual structural errors are correlated

through unobserved group heterogeneity.

Note our method in this section also relies on the existence of endogeneity, i.e.

σuv , 0. Without such endogeneity, the CFs Ri would not enter the structural or

reduced form of the model. As a result, we would not be able to recover the peer effect

α as in (5). It is also important to note that a researcher can conveniently test the null

hypothesis "σuv = 0" by doing an F-test for a null hypothesis that the two reduced-form

coefficients for Ri and R in (4) are jointly zeros. A direction for future research is to

account for such a pre-test in the inference of peer and contextual effects.

2.2 Binary Endogenous Variable: Extensions

In this subsection we discuss how to extend our method in more general settings that

either relax the functional form or distributional assumption, or allow for strategic

interactions between multiple decision makers in the first-stage model in (3).

First of all, the linearity in Zi in the first-stage model for Di in (3) is not necessary

and can be relaxed. To see this, suppose Di = 1{g(Zi) + Vi ≥ 0} with Vi distributed

as standard normal. In this case, we can recover g(Zi) by inverting the conditional

choice probabilities Pr{Di = 1|Zi} = Φ(g(Zi)), where Φ denotes the standard normal

CDF. Control functions can then be constructed similarly, with Z′iδ replaced by g(Zi) in

the definition of Ri.

Second, the bivariate normality of (Ui,Vi) is also stronger than necessary, and can be

replaced by weaker conditions. In particular, our method applies when the conditional

mean of Ui is linear in Vi, i.e., E(Ui|Vi) = V′i%, and the marginal distribution of Vi is

unrestricted. In this case, one may first recover g(·) and the marginal distribution of Vi
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from an additive, nonparametric model Di = 1{g(Zi) + Vi ≥ 0}, using shape restrictions

and methods from Matzkin (1992) and Matzkin (1994). The independence between

(Ui,Vi) and (Xi,Zi) then implies E(Ui|Zi,Di = 1) = %Ri, where Ri ≡
∫
{v≥−g(Zi)}

vdFVi(v)

with FVi being the distribution of Vi identified from the first step. Thus we can use a

CF method to identify and estimate the structural parameters as in the baseline case.

Last but not the least, we can in principle extend the method above to a setting

where the endogenous Di is determined through a Bayesian Nash equilibrium (BNE)

in a static game with incomplete information. That is,

Di = 1{Z′iδ + ψE(D−i|Z) + Vi ≥ 0}, where Z ≡ (Zi)i≤n.

Then the method above can be applied with Ri = E(Ui|Z,D) = E(Ui|Z,Di). Note that

the conditional mean for Ui depends on Z j, j , i if they are publicly observed by all

members. Consequently, Ri and R both depend on (D,Z). This is in contrast with

the case above, where Ri is a function of (Di,Zi) and R is function of (D,Z). It is

worth noting that in such an extended model, where D is determined in BNE, the rank

condition required for identification would fail if the individual members are ex ante

symmetric, i.e., Ri = R j = R for all (D,Z).

2.3 Continuous Endogenous Variable

In this section we use the control function (CF) approach to estimate a linear-in-means

social interactions model when the endogenous covariates are continuous. In this case,

an analogous CF method applies under weaker conditions. Specifically, the structural

errors (Ui,Vi) only need to be uncorrelated with the covariates and instruments (Xi,Zi)

and are therefore allowed to be heteroskedastic. Furthermore, the CF method in this

case does not require the joint distribution of (Ui,Vi) to belong to any parametric family.

Consider a DGP that has the same structural and reduced form as in (1) and (2)
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with E(XiU j) = 0 for all i, j ≤ n, but with a continuous endogenous Di:

Di = Z′iδ + Vi, where E(ZiV j) = 0, E(ZiU j) = 0 for all i, j ≤ n. (6)

Let Zi contain distinct elements that are not in Xi. We show how to use control functions

to deal with endogenous Di and solve the reflection problem.

Assume (a) E(XiV j) = 0 for all i, j ≤ n (which is already implied by (6) if Xi is a

sub-vector of Zi), and (b) (Ui,Vi) is uncorrelated with (U j,V j) for all j , i. (Later in

Section 4.1 we generalize our method after removing condition (b) and allowing for

correlation between (Ui,Vi) across i ≤ n.)

Write the linear projection of Ui on Vi as:

Ui = ρVi + ei. (7)

Suppose ρ , 0 so that the endogeneity in Di is due to the correlation between Ui and

Vi. By construction, E(Viei) = 0. Besides, E(Vie j) = 0 for i , j because Vi is uncorrelated

with (U j,V j). Moreover, E(Xie j) = 0 and E(Zie j) = 0 for all i, j, because e j is a linear

function of U j and V j. Thus we can write the reduced form in (2) as

Yi = β̃0 + X′iβX + X
′

γ̃X + DiβD + Dγ̃D + ρVi + ρ̃V + ẽi, (8)

where ρ̃ ≡ αρ
1−α and ẽi ≡ ei + αe

1−α .

Because Di is a linear function of Zi and Vi, it then follows that the error terms

ẽi in Equation (8) are also uncorrelated with Zi,Di,Vi and their respective group

means. By regressing Di on Zi, we can consistently estimate Vi and its group mean

V. Thus for identification, we can treat Vi and V as “observable”. Hoshino (2023)

uses a similar strategy to control for endogenous treatment and summed treatments

of friends in a potential outcome framework, i.e., including own controlled variable

and summed control variables of friends. Assume the support of (1,Xi,X,Di,D,Vi,V)
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is not contained in a linear subspace for each i ≤ n. We identify

β̃0, βX, γ̃X, βD, γ̃D, ρ, ρ̃

from OLS regression of Yi on (1,Xi,X,Di,D,Vi,V). Then we can recover the structural

parameters as:

α =
ρ̃

ρ + ρ̃
, β0 = (1 − α)β̃0, γX = (1 − α)γ̃X − αβX, γD = (1 − α)γ̃D − αβD. (9)

In this case, additional sources of exogenous variation from the control function

variables Vi helps us to solve the reflection problem. Note that the endogeneity of

Di is in fact necessary for our method, i.e., our method requires ρ , 0 in order to

recover α from the reduced-form coefficients as in (9). As in the case with σuv in Section

2.1, a researcher can conveniently test the null hypothesis "ρ = 0" by doing a simple

t-test on the reduced-form coefficient for Vi in (8).

Similar to the case with discrete endogeneity, our method essentially uses the CFs

(Vi) as generated regressors that satisfy the exclusion restriction in Manski (1993). In

other words, if we substitute (7) into (1), then Vi serves as an additional regressor in

the structural form, which has no contextual effects. Thus the reflection problem is

resolved thanks to Proposition 2 in Manski (1993).

To reiterate, the CF method for dealing with continuous endogenous variables

under social interactions only requires E(XiU j),E(XiV j),E(ZiU j),E(ZiV j) to be zero for

all i, j. This allows (Ui,Vi) to be heteroskedastic, e.g., to have conditional variances

that depend on the values of (Xi,Zi). Moreover, it does not require the distribution of

(Ui,Vi) to belong to any parametric family. These conditions are much weaker than

those used for the case with dummy endogenous covariates in Section 2.1.
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3 Two-Step Estimation

For simplicity, we present estimators when Xi is a strict sub-vector of Zi; generalization

to cases where Xi contains distinct elements from Zi is straightforward. Let the sample

contain G independent groups, indexed by g = 1, ...,G. Group sizes may vary across

the groups, with ng denote the number of individuals in a group g. For each group,

the sample reports {Yg,Dg,Zg}g≤G, where Yg ≡ (Yg,i)i≤ng and likewise for Dg,Zg.

Consider the baseline case with binary endogenous variable Dg,i ∈ {0, 1} in Section

2.1. Let δ̂ denote the first-step Probit estimator for δ in (3). For each individual i in

group g, calculate

R̂g,i ≡
[
Dg,iλ(Zg,iδ̂) − (1 −Dg,i)λ(−Zg,iδ̂)

]
,

where λ(·) ≡ φ(·)/Φ(·). Let R̂g ≡
1

ng

∑ng

i=1 R̂g,i, and define a row-vector of generated

regressors as

Wg,i(δ̂) ≡
(
1,Xg,i,Xg,Dg,i,Dg, R̂g,i, R̂g

)
.

Let θ ≡
(
β0, β′X, γ̃

′

X, β
′

D, γ̃
′

D, σuv, σ̃uv

)′
∈ Rdim(θ) be a column-vector that collects all

reduced-form parameters. Let W(δ̂) be a (
∑G

g=1 ng)-by-dim(θ) matrix that stacks the

row-vector of generated regressors Wg,i(δ̂) from all groups and individuals, and Y be

(
∑G

g=1 ng)-by-1 vector that stacks the column-vectors Yg ∈ Rng for all g = 1, ...,G. Our

two-step estimator for θ is constructed by regressing Y on W(δ̂):

θ̂ ≡
[
W(δ̂)′W(δ̂)

]−1 [
W(δ̂)′Y

]
.

We derive the asymptotic property of θ̂ as a two-step m-estimator as follows. First,

under regularity conditions, e.g., as in Lemma 4.3 of Newey and McFadden (1994),

1
GW(δ̂)′W(δ̂) and 1

GW(δ̂)′Y converge in probability to their population counterparts

as G → ∞. This establishes the consistency of our estimator: θ̂
p
→ θ. Next, let
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A ≡ limG→∞ E
(

1
G

∑G
g=1 W′

gWg

)
, where Wg is shorthand for the ng-by-dim(θ) matrix Wg(δ),

evaluated at the true parameter. Under standard regularity conditions, the first-order

condition in the second-step regression implies:

√

G
(
θ̂ − θ

)
= A−1

{
−G−1/2

∑
g

sg(θ; δ̂)
}

+ op(1),

where sg(θ; δ̂) ≡ Wg(δ̂)′
[
Yg −Wg(δ̂)θ

]
, with Wg(δ̂) being ng-by-dim(θ) and stacking

Wg,i(δ̂) across i in each group g. A mean-value expansion of sg(θ; δ̂) around δ implies

G−1/2
∑

g
sg(θ; δ̂) = G−1/2

∑
g

sg(θ; δ) + F0

√

G(δ̂ − δ) + op(1),

where F0 ≡ limg→∞ E
[

1
G

∑G
g=1 ∇δsg(θ; δ)

]
. Let rg(δ) denote the influence function in the

asymptotic linear representation of the first-step estimator δ̂. That is,
√

G(δ̂ − δ) =

G−1/2 ∑
g rg(δ) + op(1). It then follows that the limiting distribution of θ̂ is

√

G
(
θ̂ − θ

) d
−→ N(0,A−1BA−1),

where B ≡ limg→∞ E
[

1
G

∑G
g=1 mg(θ; δ)mg(θ; δ)′

]
, with mg(θ; δ) ≡ sg(θ; δ) + F0rg(δ).

The components in asymptotic variance A,B can both be consistently estimated

by their sample analogs. In our empirical application, we use bootstrap resampling

methods to calculate the standard errors. Our estimator θ̂ is a smooth function of

sample averages that are constructed using a standard MLE (probit) estimator δ̂ in

a first step. Hence we employ the bootstrap algorithm as a means to approximate

sampling uncertainties in the application. A formal proof of bootstrap validity is

outside the scope of the paper, and left for future research.

To estimate remaining structural parameters, i.e., the peer effect α, the contextual

effects γX, γD and the intercept β0, simply plug θ̂ in the formulas in (5). Asymptotic

variance of these parameters can be obtained from the limiting distribution of the

reduced-form parameters in (4) using the Delta Method.

The model with continuous endogenous Di is estimated using a similar two-step
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procedure. First, regress Dg,i on Zg,i for all individual i and group g. Calculate

individual residuals V̂g,i and group means V̂g ≡
1

ng

∑ng

i=1 V̂g,i. Next, use pooled OLS

to regress Yg,i on (1, Xg,i, Xg, Dg,i, Dg, V̂g,i, V̂g) and get estimates for ˆ̃β0, β̂X, ˆ̃γX, β̂D, ˆ̃γD,

ρ̂, ˆ̃ρ. Then plug them in (9) to estimate remaining structural parameters α, γX, γD.

Asymptotic properties are similar to the case with discrete Di, with Vg,i, ρ playing the

roles that are analogous to those of Rg,i, δ in the former case.

4 Extensions

4.1 Continuous Endogenous Variables with Correlated Errors

In this subsection we extend the method for continuous endogenous variables in

Section 2.3 to more general settings where the structural errors (Ui,Vi) are correlated

across individual members i = 1, 2, ...,n in the same group. We maintain the same

conditions as in Section 2.3, except for the uncorrelation between (Ui,Vi) and (U j,V j)

in (b).

In the first step, project Ui over Vi and the average of V j with j , i. That is,

Ui = ρVi + ϕV−i + ei.

By substituting this adapted linear projection into the reduced form (2), and using the

facts that V−i = nV−Vi
n−1 and 1

n

∑
i V−i = V, we get

Yi = β̃0 + X′iβX + X
′

γ̃X + DiβD + Dγ̃D + ρ∗nVi + ϕ∗nV + ẽi, (10)

for each i = 1, 2, ...,n, where ρ∗n ≡ ρ −
ϕ

n−1 and ϕ∗n ≡
α(ρ+ϕ)

1−α + n
n−1ϕ while β̃0, γ̃X, γ̃D are the

same as in the reduced form (2).

Under our maintained assumptions and the property of linear projection, the

composite errors ẽi are uncorrelated with all explanatory variables on the right-hand

side of equation (10) (including the generated regressors Vi and V). Thus we can use
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OLS to consistently estimate ρ∗n and ϕ∗n.

Next, suppose there is exogenous variation in the group size n in the sample. That is,

the reported groups have different sizes such as n and n′, but share the same structural

parameters. Then we can recover ϕ from the difference of identified reduced-form

parameters ϕ∗n′ − ϕ
∗

n. This in turn allows us to sequentially (over-)identify ρ from ρ∗n,

and then α from ϕ∗n respectively.

Note the method above allows for flexible correlation between (Ui,Vi) across all

members i = 1, 2, ...,n in the same group. In fact, it exploits a nonzero ϕ when

such correlation exists. This differs qualitatively from earlier papers that use second

moments of observed outcomes to identify peer effects, e.g., Sacerdote (2001) and Liu

(2017). In those papers, the structural errors are assumed to be uncorrelated across

individual members within the same group.

4.2 Binary Endogeneity with Group Heterogeneity: Random Effects

Suppose the structural form of DGP is similar to (1), except that now it contains a

group-level unobserved heterogeneity c. The reduced form of such a model is:

Yi = β̃0 + X′βX + X
′

γ̃x + DβD + Dγ̃D + c̃ + Ũi for i ≤ n,

where c̃ ≡ c/(1 − α) and β̃0, γ̃x, γ̃D, Ũi are as defined in Section 2. Let Di be determined

as in (3). To fix ideas, suppose Xi is a strict sub-vector of Zi. Let Z ≡ (Zi)i≤n; likewise

define two n-vectors U,V. Assume E(c|Z,V) = 0; (U,V) is independent from Z; and

(Ui,Vi) is bivariate normal and independent across i ≤ n. Under these assumptions,

E(Yi|Z,D) takes the same form as (4) in Section 2:

E(Yi|Z,D) = β̃0 + X′βX + X
′

γ̃x + DβD + Dγ̃D + σuvRi + σ̃uvR.

Therefore we can apply the same method as in Section 2.1 to identify and estimate all

structural parameters.
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The main identifying condition is the “random effect” assumption that E(c|Z,V) = 0.

This rules out endogeneity in Di due to correlation between group heterogeneity c and

individual noises V. However, both (Ui,Vi) and (c,U) are allowed to be correlated

respectively. In a multivariate normal case, this means

c

Ui

Vi

U j

V j


∼ N





0

0

0

0

0


,



σ2
c σcu 0 σcu 0

σ2
u σuv 0 0

1 0 0

σ2
u σuv

1




.

4.3 Binary Endogeneity with Group Heterogeneity: Fixed Effects

In this subsection, we remove the random-effect assumption E(c|Z,V) = 0, and apply

a fixed-effect approach to recover peer and contextual effects in a social interactions

model. We allow group sizes to vary across observations, and assume the structural

parameters are the same across groups with different sizes. This assumption was

maintained in other papers that used group size variation to identify models with social

interactions or social networks, such as Lee (2007a) and Davezies, d’Haultfoeuille, and

Fougère (2009). In this section we extend these papers by allowing for endogenous

covariates. We hope to make the following point here: When there is additional

complication due to endogenous regressors, researchers can use the variation in

individual instruments, as well as that in group sizes, to identify the model.

Let the group means take a “leave-one-out” form. That is,

Yi = αY−i + X′iβX + X
′

−iγX + DiβD + D−iγD + c + Ui for i ≤ n,

where Y−i ≡
1

n−1

∑
j,i Y j and likewise for X−i and D−i. Lee (2007) showed that for all
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i ≤ n,

Yi − Y = (Xi − X)πX,n + (Di −D)πD,n + π0,n(Ui −U),

where Y ≡ 1
n−1

∑n
j=1 Yi and X,D,U are respective group means, and

πX,n =
(n − 1)βX − γX

n − 1 + α
, πD,n =

(n − 1)βD − γD

n − 1 + α
, π0,n =

n − 1
n − 1 + α

. (11)

The endogenous covariate Di is determined as in (3), with Xi being a strict sub-vector

of Zi.

As before, assume that (Ui,Vi) are independent from Z, and are i.i.d. bivariate

normal across group members i ≤ n. Normalize the standard deviation of Vi to 1. As

before, E (Ui|Z,D) = E (Ui|Zi,Di) = σuvRi and E(U|Z,D) = σuvR with R ≡
∑

i Ri/n. Thus

by regressing Yi − Y on (Xi − X,Di − D,Ri − R) and their interaction with group size

dummies, we can consistently estimate πX,n, πD,n, and π̃0,n ≡ π0,nσuv for n ≥ 2. For each

group size n represented in the data-generating process, we can use (11) to construct a

linear system:


−πX,n n − 1 −1 0 0 0

−πD,n 0 0 n − 1 −1 0

−π̃0,n 0 0 0 0 n − 1

︸                                               ︷︷                                               ︸
≡M(n)



α

βX

γX

βD

γD

σuv

︸ ︷︷ ︸
≡τ

=


(n − 1)πX,n

(n − 1)πD,n

(n − 1)π̃0,n

︸            ︷︷            ︸
≡b(n)

.

Stacking two linear systems with group sizes n , n′, we get M(n)

M(n′)

 τ =

 b(n)

b(n′)

 .

The structural parameters are identified as long as the coefficient matrix on the
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left-hand side has full rank. This holds generically over the parameter space of

(α, βX, γX, βD, γD, σuv). With more variation in the group sizes, we can append the

linear system above with more equations to achieve identification under proper rank

conditions. Note the assumption on the unobserved errors here is weaker than that in

the previous section. Namely, in a multivariate normal case, this means the covariance

between c and Vi as well as Ui are allowed to be both nonzero.

5 Peer Effects in Academic Achievements

In this section, we study peer effects in student academic achievements using data from

elementary schools in the State of Tennessee. The data comes from the Student/Teacher

Achievement Ratio (STAR) Project, which was a four-year longitudinal study funded

by the Tennessee General Assembly, and conducted by the Tennessee State Department

of Education. The project was designed to study the relation between class sizes and

student academic performance through randomized experiments.

We apply our method to infer peer and contextual effects in Grade 3 math test

scores. In particular, we include students’ lagged test scores from Grade 2 as an

explanatory variable, in order to account for previous educational inputs and heritable

endowments, and obtain an “value-added” interpretation. Other papers that used

lagged scores as covariates include Todd and Wolpin (2003) and Hanushek, Kain,

Markman, and Rivkin (2003). Our analysis takes into account the endogeneity in

lagged scores, which could be due to unobserved heterogeneity in student ability and

family influence that persisted over time or due to the interpretation of Grade 2 score

as a proxy for a student’s ability.

Papers that studied general peer effects in student academic achievements include

Hoxby (2000), Sacerdote (2001), Zimmerman (2003), Angrist and Lang (2004), Hoxby

and Weingarth (2005), Kang (2007), Ammermueller and Pischke (2009), Calvó-
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Armengol, Patacchini, and Zenou (2009), Carrell, Fullerton, and West (2009), Duflo,

Dupas, and Kremer (2011), Lin (2010), Lavy, Paserman, and Schlosser (2012), Burke

and Sass (2013), Hong and Lee (2017), Ross and Shi (2021). More specifically, a

series of earlier papers had used the same source of STAR data to study the relation

between students’ academic achievements and class or peer characteristics. Word

et al. (1990) and Krueger (1999) found evidence that on average small classes had

positive effects on student achievements; Krueger and Whitmore (2001) analyzed the

effect of students’ past attendance in small classes; Dee (2004) investigated the effect

of exposure to an own-race teacher; Whitmore (2005) documented that both genders

showed similar gains from being assigned to small classes, and noted that such gains

depend on the gender composition of classrooms. Graham (2008) and Sojourner (2013)

estimated the impact of peer characteristics on student outcomes, by exploiting second

moment restrictions and pre-assignment achievement measures, respectively. In the

terminology of Manski (1993), the impact they recovered is a composite of peer and

contextual effects. Boozer and Cacciola (2001) estimated the peer effects in a model with

no contextual effect, using experimental variation in class quality (fraction of students

exposed in the previous year to small classes) as an instrument for peer achievement.

Hanushek, Kain, Markman, and Rivkin (2003) studied a model where the vector of

student/family characteristics with direct effects differed from those with contextual

effects. They also used lagged rather than contemporaneous peer achievement in the

structural form. Our work differs from these papers, and contributes to the literature

by estimating the peer, contextual and individual effects in a general specification

that allows all individual characteristics to have contextual effects, and accommodates

endogeneity in students’ lagged test scores.

Our sample contains 4,821 students in 327 classes from 79 schools in the State

of Tennessee. The students were randomly assigned into one of three class types
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(interventions): small class, regular class, and regular-with-aide class. Teachers were

also randomly assigned into classes. The longitudinal study followed a cohort of

students from kindergarten to the third grade. For each student, the sample reports

his/her race, gender, days of absence and presence in the third grade, as well as the type

of class he/she belonged to in each grade. The data also contains students’ Self-Concept

and Motivation Scores in each grade. 6 In addition, the data reports the experience

and qualification of teachers assigned to each class, as well as whether the school is

located in an urban area.

We study the peer effects in classroom on Grade 3 (G3) math test score. Due to the

unobserved heterogeneity or measurement error (if we take Grade 2 math performance

as proxy for ability), the Grade 2 math performance is considered endogenous. Table 1

summarizes student and class characteristics in the sample. G3/G2 math scores report

the percent of learning objectives mastered by a student, which are measured on a

standardized scale of 100, a.k.a. BSF (Basic Skill Factor); other covariates with no

designated units are dummy variables.

We adopt the following econometric specification for peer and contextual effects

in classroom, with βD, γD reflecting the “path dependence” on a student’s own and

classmates’ test scores in G2 math:

G3Mg,i = α0 + α1G3Mg + X′g,iβX + X
′

gγX + βDG2Mg,i + γDG2Mg + ρVg,i + eg,i. (12)

In this specification, Xg,i contains both student and class characteristics. These include

Gender, White (a dummy variable for race), Days of Absence, self-reported Motivation

Score, Self-Concept Score, Class Type (small or regular), School Urbanicity, Teacher

6Each student participating in STAR was asked to complete a self-concept and motivation inventory,
a.k.a. SCAMIN (Milchus, Farrah, and Reitz, 1968), which asked students to indicate pictorially their
responses to 24 situations. These responses are then condensed into a continuous measure of motivation
and self-concept on a scale between 0-60.
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Table 1: Summary Statistics
Variable Mean SD
G3 Math 83.859 19.614
G2 Math 89.540 12.966

Female 0.491 0.500
White 0.677 0.468

Absence (days) 6.568 6.047
G3 Motivation 49.214 3.978

G3 Self-Concept 44.163 4.773
G2 Motivation 49.618 3.732

G2 Self-Concept 46.786 4.655
Class Characteristics
G3 Small Class 0.416 0.494
G2 Small Class 0.382 0.487

School Urbanicity 0.526 0.500
G3 Teacher Bachelor Degree 0.557 0.498
G2 Teacher Bachelor Degree 0.606 0.489
G3 Teacher Experience (yrs) 13.981 8.606
G2 Teacher Experience (yrs) 13.281 8.787

G3 Teacher STAR training 0.153 0.360
G2 Teacher STAR training 0.147 0.354

Bachelor Degree,7 Teacher Experience (in years) and a dummy for whether the teacher

had received STAR training. We let Xg consist of the proportion of females and whites

in each class, the class averages of days of absence and presence, and the class average

of motivation and self-concept scores.

As noted in Section 2.3, Vg,i is the residual from a first step that regresses G2 math

scores on a vector of exogenous covariates, which include our choice of instruments:

lagged motivation score of each student in the second grade, lagged self-concept

score of each student in the second grade, lagged values of teacher experiences and

qualifications in the second grade, and the class type the student belonged to in the

second grade. These instruments do not directly contribute to G3 math scores, once the

path dependence through G2 scores are taken into account. On the other hand, they do

7We define Teacher Bachelor Degree to be 1 if the teacher is with a bachelor degree and 0 for those
with master and higher degree.
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directly contribute to the endogenous G2 math scores. Table A5 in the appendix reports

estimates, R-square and F-statistic from the first-stage regression. It provides evidence

that such lagged information about teacher and students has statistically significant

impact on G2 math scores.

Table 2: Estimates of Social Effects in Structural Equation
Variable Estimate Standard Error
G2 Math 1.142** 0.212

Average G2 Math −0.558** 0.164
Female 0.506 0.501

Average Female 0.449 1.813
White 2.371** 1.128

Average White −0.162 2.729
Absence −0.185** 0.041

Average Absence −0.045 0.182
Motivation 0.062 0.064

Average Motivation −0.194 0.165
Self-Concept 0.067 0.050

Average Self-Concept 0.037 0.148
Small Class 0.005 1.022

School Urbanicity 1.426 1.018
Teacher Degree −1.711* 0.891

Teacher Experience −0.052 0.055
Teacher STAR training −1.076 1.055

Intercept −16.740 15.048
Peer effects 0.598** 0.267

V̂ −0.369* 0.213
R2 = 0.348, F-statistic=134.9 from the reduced form regression.

Table 2 reports the results from our two-step estimator that uses the control function

approach to deal with endogeneity in G2 math scores. The peer effects is estimated to

be 0.598, and is statistically significant at 5% level. A student’s G2 math score is shown

to have a significant direct positive effect on his/her own G3 score; the point estimate

of the size of this effect is larger than that of the peer effect. Teachers with master

degrees (and higher) are shown to have a positive effect on students’ G3 math scores.
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The days of absence from school has a small yet significant negative effect (per day)

on G3 math scores. Moreover, statistical significance of the control function variable

Vg,i suggests there is correlation between U and V, which corroborates endogeneity

in G2 math scores. The negative sign for the coefficient of Vg,i can be attributed to

measurement errors in the structural equation. That is, the lagged math score G2M can

be interpreted as a noisy proxy for a student’s unobservable ability, which is an actual

covariate in (12) in place of G2M.8

For comparison, we estimate two alternative models that ignore endogeneity or

path dependence in G2 scores. The first one has no peer effects but includes the

endogenous G2 math scores and its contextual effects. In this case, we use control

function to deal with endogeneity in G2 math scores, using V̂ from the first stage as in

Table A5. The second is even more simplistic, with no peer effects or G2 math scores

in the covariates.

Comparing the results in Table 2 with those in Table 3 (no peer effect) and Table 4 (no

peer effect or path dependence) illustrates the consequence of ignoring peer effects in

empirical analysis. When peer effects are not accommodated in estimation, school

urbanicity, teacher experience and teacher training are shown to have significant

direct effects on G3 math scores while white race, days of absence and self-reported

motivation have significant contextual effects. Yet these effects turn out to be not

statistically significant once peer effects are incorporated in the analysis in Table 2.

Also, without peer effects, the extent of path dependence, as reflected by the coefficient

for G2 Math, is over-estimated at 1.404, in comparison with that reported in Table 2.

Comparison of Table 4 with Tables 2 and 3 indicates that ignoring the endogenous

8To see this, suppose the right-hand side of (12) includes a student’s unobserved ability, Abti instead
of G2M, where G2Mg,i = Abti + εg,i. Then the econometric error in the structural equation absorbs
−βAbtεg,i − γAbtεg, where βAbt and γAbt are positive.
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Table 3: Estimation Results: No Peer Effects
Variable Estimate Standard Error
G2 Math 1.404** 0.132

Average G2 Math −0.219** 0.046
Female 0.327 0.489

Average Female 1.953 2.214
White 1.446 1.068

Average White 5.900** 1.348
Absence −0.187** 0.040

Average Absence −0.390** 0.128
Motivation 0.054 0.065

Average Motivation −0.354* 0.195
Self-Concept 0.068 0.054

Average Self-Concept 0.197 0.155
Small Class 0.435 0.537

School Urbanicity 1.202* 0.618
Teacher Degree −1.688** 0.476

Teacher Experience −0.053* 0.028
Teacher STAR training −0.965 0.644

V̂ −0.634** 0.132
Intercept −20.417 13.922

R2 = 0.347, F-statistic=142.0.

G2 math scores would suggest small classes have significant positive effect on G3

math scores. However, such significance disappears once we accommodate path

dependence on G2 math scores in the model, and use the control function method to

deal with the endogenous lagged math scores. That small classes have no significant

effect on student achievements is consistent with findings in Lazear (2001), Hanushek

(2003).
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Table 4: Estimation Results: No Peer Effects and No Path Dependence
Variable Estimate Standard Error
Female 1.404** 0.557

Average Female −0.985 2.558
White 6.501** 1.113

Average White 8.844** 1.458
Absence −0.264** 0.046

Average Absence −0.626** 0.146
Motivation 0.067 0.076

Average Motivation −0.069 0.225
Self-Concept 0.173** 0.062

Average Self-Concept −0.073 0.179
Small Class 2.378** 0.573

School Urbanicity −0.082 0.704
Teacher Degree −2.280** 0.550

Teacher Experience −0.081** 0.033
Teacher STAR training −0.353 0.743

Intercept 76.402** 10.659
R2 = 0.123, F-statistic=44.75.

6 Conclusion

We use control function methods to identify and estimate the peer and contextual

effects in linear-in-means social interactions models with endogenous covariates. We

resolve the "reflection problem" as noted in Manski (1993) by exploiting the variation

in individual-level instruments for endogenous covariates. Our approach has several

desirable features. It applies classical control function methods or Heckit correction for

endogeneity bias in the new context of social interactions, and it is easy to implement

in practice. It eliminates the need for additional instruments for simultaneity in

individual outcomes, which are often hard to find in practice. Nor does it require

any exclusion restriction that some covariates have no contextual effect. Our work

also contributes to the treatment effects literature by relaxing the Stable Unit Treatment

Value Assumption (SUTVA). That is, we allow individuals’ self-selected treatments to
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influence the outcomes of other group members through peer and contextual effects.

Applying our method to estimate social effects in Grade 3 math scores of elementary

school students in Tennessee, we find significant evidence for positive peer effects and

path dependence on G2 scores.
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Appendix

A Monte Carlo Evidence

We consider two monte carlo experiments, with the endogenous variable being binary
and continuous respectively.

A.1 Binary Endogenous Variable
We let Xi,Di both be scalar variables. For each group, let Zi ≡ (1,Xi,Zi1) be independent
across i ≤ n, and Xi,Zi1 be independent, standard normal. For each i, let (Ui,Vi) be
drawn from the bivariate normal with mean (0, 0), unit variance and covariance matrix
σuv. We set the true parameters as (α, βX, γX, βD, γD, σuv) = (1/2, 1, 1, 1, 1, 2/3). The vector
of outcomes Yi, i ≤ n is generated by the reduced form in (2), and Di is generated by
(3) with δ = (0, 1, 2). We experiment with group sizes n = 5 and n = 10, and sample
sizes G = 250, 500, 1, 000. We report average biases and MSE with 1,000 replications in
Tables A1 and A2.

Table A1: Monte Carlo Results: Binary D (n=5)
G Average Bias

α β0 βX βD γX γD σuv

250 -0.028 -0.045 0.001 0.001 0.109 0.151 -0.001
500 -0.015 -0.026 0.000 0.002 0.054 0.076 -0.001

1,000 -0.007 -0.012 -0.001 0.001 0.029 0.036 0.000
MSE

α β0 βX βD γX γD σuv

250 0.025 0.123 0.001 0.007 0.365 0.652 0.005
500 0.010 0.053 0.001 0.004 0.141 0.255 0.002

1,000 0.004 0.023 0.000 0.002 0.060 0.103 0.001

In Tables A1 and A2, both the average bias and the mean-squared error decrease at
the same rate as the increase in sample size. This confirms our asymptotic theory that
the two-step estimator is root-n consistent. That the squared average bias converge



Social Interactions with Endogeneity 36

Table A2: Monte Carlo Results: Binary D (n=10)
G Average Bias

α β0 βX βD γX γD σuv

250 -0.033 -0.051 -0.001 0.003 0.125 0.163 -0.001
500 -0.017 -0.029 -0.001 0.001 0.067 0.084 0.000

1,000 -0.008 -0.014 0.000 0.000 0.029 0.039 0.000
MSE

α β0 βX βD γX γD σuv

250 0.032 0.132 0.001 0.003 0.461 0.844 0.002
500 0.009 0.049 0.000 0.002 0.134 0.226 0.001

1,000 0.004 0.021 0.000 0.001 0.055 0.094 0.001

at a rate faster than the increase in sample sizes indicates the dominant component in
MSE is the estimator variance. Meanwhile, the size of groups does not have obvious
impact on estimation precision, especially in larger samples.

A.2 Continuous Endogenous Variable
In this subsection, we use a DGP with continuous endogenous covariates D. We
adopt the same specification for the distribution of (Xi,Zi) as in Appendix A.1. But
Yi is now generated by the reduced form in (8) and Di is generated by (6). Both Vi

and ei are drawn from standard normal and Ui = ρVi + ei. The true parameters are:
(α, βX, γX, βD, γD, ρ) = (1/2, 1, 1, 1, 1, 2/3) and δ = (0, 1, 2). As before, we experiment
with group sizes n = 5 and n = 10, and sample sizes G = 250, 500, 1000. We report
average biases and MSE with 1,000 replications in Tables A3 and A4.

Table A3: Monte Carlo Results: Continuous D (n = 5)
G Average Bias

α β0 βX βD γX γD ρ
250 -0.007 0.014 0.002 0.000 0.022 0.028 0.000
500 -0.002 0.006 0.001 0.000 0.005 0.009 0.001

1,000 -0.002 0.005 -0.001 0.000 0.007 0.009 0.000
MSE

α β0 βX βD γX γD ρ
250 0.004 0.018 0.002 0.000 0.062 0.074 0.001
500 0.002 0.008 0.001 0.000 0.027 0.033 0.001

1,000 0.001 0.004 0.000 0.000 0.014 0.016 0.000
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Table A4: Monte Carlo Results: Continuous D (n = 10)
G Average Bias

α β0 βX βD γX γD ρ
250 -0.007 0.015 0.001 0.000 0.023 0.029 0.002
500 -0.004 0.010 -0.001 0.001 0.019 0.018 0.000

1,000 -0.002 0.005 0.000 0.000 0.009 0.010 0.000
MSE

α β0 βX βD γX γD ρ
250 0.003 0.014 0.001 0.000 0.051 0.060 0.001
500 0.002 0.007 0.000 0.000 0.026 0.031 0.000

1,000 0.001 0.004 0.000 0.000 0.013 0.016 0.000

Similar to the case with discrete Di, the simulation results are consistent with
root-n convergence of the two-step estimator, and the group size does not seem to
have obvious impact on estimation precision. Again, there is evidence that estimator
variance is the dominating component in MSE. Overall, both the average bias and the
mean-squared errors appear to be lower than those reported for the DGP with discrete
Di. This comparison is more obvious with smaller samples. We conclude that in this
setup, the richer variation in the endogenous Di has helped to increase estimation
precision, once such endogeneity is dealt with using control functions.
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B First-stage OLS Result

Table A5: First-stage OLS Results: Grade 2 Math Scores
Variable Estimate Standard Error
Female −2.774 6.051

Average Female −1.029 1.673
White 18.613** 7.209

Average White 2.875** 1.135
G2 Small Class 2.779 6.057

School Urbanicity 3.012 6.710
G2 Teacher Degree −2.162 5.614

G2 Teacher Experience −0.254 0.326
G2 Teacher STAR training −13.244* 7.533

G2 Motivation −0.091 0.338
Average G2 Motivation 0.679** 0.180

G2 Self-Concept −0.576* 0.340
Average G2 Self-Concept −0.184 0.132

Female ×White 0.569 0.945
Female × G2 Small −1.057 0.795

Female × Urbanicity 0.546 0.879
Female × G2 Degree −1.192 0.764

Female × G2 Experience −0.047 0.043
Female × G2 Training 0.006 1.038

Female × G2 Motivation 0.126 0.113
Female × G2 Self-Concept −0.039 0.088

White × G2 Small −0.084 1.012
White × Urbanicity 0.117 1.375
White × G2 Degree 1.192 0.988

White × G2 Experience −0.012 0.056
White × G2 Training 0.413 1.331

White × G2 Motivation −0.416** 0.139
White × G2 Self-Concept 0.099 0.111

G2 Small × Urbanicity 0.743 0.936
G2 Small × G2 Degree −1.102 0.846

G2 Small × G2 Experience −0.061 0.048
G2 Small × G2 Training −1.169 1.150

G2 Small × G2 Motivation −0.053 0.117
G2 Small × G2 Self-Concept 0.076 0.096

Urbanicity × G2 Degree −0.183 0.921
Urbanicity × G2 Experience 0.114** 0.055

Urbanicity × G2 Training 2.812** 1.206
Urbanicity × G2 Motivation 0.064 0.132

Urbanicity × G2 Self-Concept −0.072 0.104
G2 Degree × G2 Experience −0.004 0.051

G2 Degree × G2 Training 0.073 1.082
G2 Degree × G2 Motivation 0.014 0.111

G2 Degree × G2 Self-Concept 0.041 0.088
G2 Experience × G2 Training 0.106* 0.057

G2 Experience × G2 Motivation 0.003 0.006
G2 Experience × G2 Self-Concept 0.001 0.005

G2 Training × G2 Motivation 0.066 0.152
G2 Training × G2 Self-Concept 0.172 0.121

G2 Motivation × G2 Self-Concept 0.009 0.007
Intercept 71.380** 17.279

R2 = 0.081, F-statistic=8.527 with p-value 0.000.
**: 5% Significant; *: 10% Significant.
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